

3.2. Vazão de Adução - Água Tratada

, ,			
	k₁xP₀xqx24	214.07 m ³ /h	
Vazão de Adução Inicial (Q _{AAT(0)})	86400 x T _b	59.46 L/s	59.47
N. T. d. Adv. T. deleiel / O	k ₁ x P _{ZP-1} x q x 24	64.10 m ³ /h	
Vazão de Adução Inicial (Q _{AAT(ZP-1)}):	86400 x T _b	17.81 L/s	
None de Administration (A)	k ₁ x P _{ZP-2} x q x 24	53.21 m ³ /h	
Vazão de Adução Inicial (Q _{AAT(ZP-2)}):	86400 × T _b	14.78 L/s	
Manife de Advesia leiejel (O)	k ₁ x P _{ZP-3} x q x 24	96.77 m ³ /h	
Vazão de Adução Inicial (Q _{AAT(ZP-3)}):	86400 x T _b	26.88 L/s	
	k ₁ x P ₁₀ x q x 24	255.84 m³/h	
Vazão de Adução 10 Anos (Q _{AAT(10)}) :	86400 x T _b	71.07 L/s	71.07
North de Adustic 400 (O	k ₁ x P _{ZP-1} x q x 24	76.61 m³/h	
Vazão de Adução 10A (Q _{AAT(ZP-1)}):	86400 x T _b	21.28 L/s	
Mansa da Aduasa dos CO	k ₁ x P _{ZP-2} x q x 24	63.59 m ³ /h	
Vazão de Adução 10A (Q _{AAT(ZP-2)}):	86400 x T _b	17.66 L/s	
Maria da Aduaño 40A (O	k ₁ x P _{ZP-3} x q x 24	115.64 m ³ /h	
Vazão de Adução 10A (Q _{AAT(ZP-3)}):	86400 x T _b	32.12 L/s	
	k ₁ x P ₂₀ x q x 24	311.86 m³/h	
Vazão de Adução 20 Anos (Q _{AAT(20)}) :	86400 x T _b	86.63 L/s	86.63
)(k ₁ x P _{2P-1} x q x 24	93.39 m³/h	
Vazão de Adução 20A (Q _{AAT(ZP-1)})	86400 x T _b	25.94 L/s	
Vanisa da Aduaia 20A (O)	k, x P _{zp-2} x q x 24	77.51 m ³ /h	
Vazão de Adução 20A (Q _{AAT(2P-2)}):	86400 x T _b	21.53 L/s	
Vazān de Aducān 204 / O	k ₁ x P _{ZP-3} x q x 24	140.96 m ³ /h	
Vazão de Adução 20A (Q _{AAT(ZP-3)}):	86400 x T _b	39.16 L/s	

4. Vazão de Distribuição

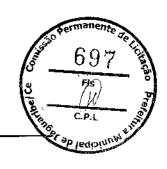
4.1. Vazão de Distribuição

Vazão de Distribuição Inicial (Q ₀)	:	240.83 m³/h 66.90 L/s	66.90
Marie de la Britania de la Companya	k ₁ x k ₂ x P _{ZP-1} x q	72.11 m ³ /h	
Vazão de Distribuição Inicial (Q _{ZP-1})	86400	20.03 L/s	
A TO A District of a Initial (O)	$k_1 \times k_2 \times P_{ZP-2} \times q$	59.86 m ³ /h	
Vazão de Distribuição Inicial (Q _{ZP-2})	86400	16.63 L/s	
	$k_1 \times k_2 \times P_{ZP-3} \times q$	108.87 m ³ /h	
Vazão de Distribuição Inicial (Q _{ZP-3})	86400	30.24 L/s	
	k ₁ x k ₂ x P ₁₀ x q	287.82 m³/h	
Vazão de Distribuição (Q ₁₆)	86400	79.95 L/s	79.95
	k ₁ x k ₂ x P _{ZP-1} x q	86.19 m ³ /h	
Vazão de Distribuição (Q _{ZP-1})	86400	23.94 L/s	
No. 10 Do Nelforio (10)	$k_1 \times k_2 \times P_{ZP-2} \times q$	71.54 m ³ /h	
Vazão de Distribuição (Q _{zp-2})	86400	19.87 L/s	
None de Distribuição (O	$k_1 \times k_2 \times P_{ZP-3} \times q$	130.10 m ³ /h	
Vazão de Distribuição (Q _{ZP-3})	86400	36.14 L/s	
	k ₁ x k ₂ x P ₂₀ x q	350.85 m ³ /h	
Vazão de Distribuição Final (Q ₂₀)	86400	97.46 L/s	97.46
No. 7 - de Disabilitation (O.)	k ₁ x k ₂ x P _{ZP-1} x q	105.06 m ³ /h	
Vazão de Distribuição (Q _{2P-1})	86400	29.18 L/s	
Vazão de Distribuição (Q _{ZP-2})	k, x k ₂ x P _{ZP-2} x q	87.20 m ³ /h	
vazao de Distribuição (QZp.2)	86400	24.22	
Vazão de Distribuição (Q _{ZP-3})	k ₁ x k ₂ x P _{ZP-3} x q	158.58 m³/h	
vazao de Distribuição (d2p.3)	86400	44.05 L/s	

5. Volume de Armazenamento

5.1 Volume de Incendio

Volume RAP - ETA (Adotado)


Atendendo o parágrafo 5.3.8 das Normas técnicas da CAGECE e por sugestão no laudo N°3 de revisão, será previsto um sistema para combate a incêndio; previsto de hidrantes na rede de distribuição e uma reserva técnica de armazenamento.

Serão previstos hidrantes de 20 L/s em áreas próximas de prefeitura, hospital municipal, áreas comerciais e hindustriais, e hidrante de 10 l/s em áreas residenciais e de menor risco de incêndio.

O volume de armazenamento para combate a incendeio será adotado para o funcionamento por 60 minutos de um hidrante de 20 L/s:

Volume (V incendia):	T(min) X Q Hidrante X 60	72 m³
	1000	
5.2 Volume Sistema de Abastecim	ento	
Volume exigido (final de plano)	:	1,871.18 m³
Volume incendio		72. 00 m³
	Volume Total:	1,943.18 m³
Volume RAP Existente (ZP-01)	•	500 m³
Volume REL01 Projetado ZP-1 (adotado)		150 m³
Volume RAP Projetado (ZP-01)		40 m³
Volume REL02 Projetado ZP-3 (adotado)		250 m³
, ,	Volume necessario	1,003.18 m³
Volume RAP - ETA (Adotado)		1100 m³

<u>Dimensionamento do Sistema de Reservação</u> Reservatórios Apoiados (RAP) e Elevados (REL)

(Município de Jaguaribe - Estado do Ceará)

1. Dados Iníciais		
1.1. População Inicio Plano		
População início (P ₀)		21,407 hab
1.2. População de Projeto (10 anos)		
População em 10 anos (P ₁₀)		: 25,584 hab
1.3. População de Projeto (20 anos)		
População em 20 anos (P ₂₀)		: 31,186 hab
1.4. Dados Adicionais		
Coef, dia de maior consumo (k ₁)		; 1.2
Consumo per capita (q)		- ; 150 Uhab,dia
2. Dimensionamento do Volume de	e Reservação	
2.1. Reservação necessária à Jaguaribe		
Volume Exigido Atualmente : (V ₀)	$(1/3) \times k_1 \times P_0 \times q$	1,284,43 m ³
Volume Exigido Atualmente ZP-1 : (V _e)	$(1/3) \times k_1 \times P_0 \times q$	-: 384.60 m ³
	1000 (1/3) y k, y P ₂ y a	
Volume Exigido Atualmente ZP-2 : (V ₀)	$= \frac{(1/3) \times k_1 \times P_0 \times q}{1000}$	-: 319.26 m ³
Maluma Exicida Atualmanda 70.2 (M.)	$(1/3) \times k_1 \times P_0 \times q$	-∶ 580.62 m³
Volume Exigido Atualmente ZP-3 : (V ₀)	1000	- 380.02 111
Volume Exigido em 10 anos : (V ₁₀)	(1/3) x k ₁ x P ₁₀ x q	1,535.02 m ³
Totalio Exigino on To alloo (Viii)	1000	
Volume Exigido ZD-1 : (V ₁₀)	(1/3) x k ₁ x P ₁₀ x q	-: 459.66 m³
, 10,	1000	
Volume Exigido ZD-2 : (V ₁₀)	$: \frac{(1/3) \times k_1 \times P_{10} \times q}{1000}$	·: 381.54 m³
	/ 1/3) v k v P v a	
Volume Exigido ZD-3: (V ₁₀)	1000	-: 693.84 m³
Volume Exigido em 20 anos : (V ₂₀)	$(1/3) \times k_1 \times P_{20} \times q$	-: 1,871.18 m ³
Volume Exigido em 20 años . (V ₂₀)	1000	1,073.10 (1)
Volume Exigido ZP-1 : (V ₂₀)	(1/3) x k ₁ x P _{2D} x q	: 560.34 m ³
	(40)	405.00 3
Volume Exigido ZP-2 : (V ₂₀)	1000	: 465.06 m³
Volume Exigido ZP-3 : (V ₂₀)	: (1/3) x k ₁ x P ₂₀ x q	.: 845.76 m ³
	1000	1 1

2.2. Reservatórios Existentes

Reservatório Existente ZP-1 (RAP-01)

Volume de Existente (VRAP)		:[_	500.00 m ³
Raio Interno da Base (R _{BASE})		:	7.00 m
Altura do Cilindro D'água (ho) :	V (π x R _{base} ²)	:	3. 2 5 m
Cota do Terreno de Reservação (C _T)		:	151.60 m
Cota de Fundo da Caixa D'água (C _{CD}):	C _T - h	:	150.53 m
Nível máximo de água (N _{máx})		:	4.34 m
Nivel mínimo (N _{min})		:	0.20 m
Folga de Nivel Interna (f)			0.40 m
Tampa (!)			0. 1 0 m
Cota do N _{máx} (CN _{máx}):	C _{CD} + N _{máx.}	:	154.87 m
Cota do N _{min} (CN _{min}):	C _{CD} + N _{min.}	: .	150.73 m

2.3. Reservatório Projetado

2.3.1 Dimensionamento do Reservatório REL-01 (Distribuição)

Reservatório Projetado ZP-1

Formato: Caixa dáqua em forma de paralelepípedo com base quadrada apoiado sobre 4 pilares

Volume Comercial Adotado (V):	150.00 m ³
Lado Interna da Base (L _{BASE})	: 7.00 m
V m ²	– : 3.06 m
Altura da Lâmina D'água (ho) (Área _{Base} m²)	, 5.00 111
Altura da Lâmina D'água Adotada (hadoi)	: 3.10 m
Cota do Terreno de Reservação (C _T)	; 151.60 m
Altura do fuster (F)	- : 12.00 m
Altura Mínima no Reservatório (h _{minRes})	: 0.20 m
Laje de fundo (h _{LF})	- : 0.30 m
Altura de Água (h) (F + h Adol + hminRes + bLF)	
Altura Mínima de Água (h _{min}): (F + h _{minRes} + h _{LF})	: 12.50 m
Folga de Nivel Interna (f)	: 0,50 m
Tampa (t)	– : 0.20 m
Cota do N _{máx} (CN _{máx}): C _R + h	167.00 m
Cota do N _{min} (CN _{min}): C _R + h _{min} .	: 164.10 m
Altura Total do Reservatório (H _R) ; (h + f + t)	: 16.10 m

Calculo do diâmetro da tubulação de saida do REL

Carento no atameno an inomitação de ma					
Perda de carga maxima	:	J		2.00	m/Km
Ecu, perda de carga unitaria (D-W) J	;	f V²	_ :	0.002	m/m
		D 2g			
Rugosidade e (D-W) tubulação FoFo	:	e	:	0.30	mm
Vazāo Maxima horaria ZP-01	:	Q	:	29.18	∐s
fator de atrito, Ecu, De Swmee (Livro Por	to, pg 46))			
$f = \left\{ \left(\frac{64}{Re} \right)^8 + 9.5 \times \right $	$\frac{5.7}{2} \pm \frac{5.7}{Re^{11}}$	$\left(\frac{4}{9}\right) - \left(\frac{2500}{\text{Re}}\right)^6$	2.5		
		: f	:	0.022	
temperatura		: T	:	30	°C ·
Viscosidade cinematica		; v	:	8.04E-07	m²/s
Numero de Reynolds		: Re	:	193,046	
Velocidade		: V	:	0.65	m/s
		J	:	0.0020	m/m
Diâmetro calculado		: D	:	239.41	mm
Diâmetro comercial assumido		: D	Ξ.	250	mm

Dimensionamento do diâmetro da tubulação vertical ou extravasor

Dimensionamento do diâmetro d	la tubulação ve	eraçai o	u extr	avasor		_	
Diâmetro adotado			:	D	:	150	mm
Razão de semelhança			:	λ	;	D/50	
Ecuação de escoamento (Livro Azevedo, pg 602)	:	Q*	:	97 x X ^{5/3}	:	25.20	L/s
Q*: capacidade de escoamento ma	ior que a vazão	de entra	ada				

2.3.2 Dimensionamento do Reservatório RAP (Distribuição)

Reservatório Projetado ETA

Formato: Caixa dágua com base retangular apoiado

Volume Adotado RAP-01(VRAP-01)	1.100,00 m ³
Serão previstos duas recamaras com semelhantes dimensões internas :	550,00 m3
Lado 1 Interna da Base (L1 _{BASE})	15,00 m
Lado 2 Interna da Base (L2 _{BASE})	
Altura da Lâmina D'água (ho) : (VRAP-01) m³ (L1BASE x L2BASE) m²	3,26 m
Altura da Lâmina D'água Adotada (hʌdot_t))	3,30 m
Cota do Terreno de Reservação (C _T)	153,20 m
Laje de fundo (h _{LF})	
Altura Enterrada (F)::	1,20 m
Altura Mínima no Reservatório (ħmínRes):	0,20 m
Folga de Nível Interna (f):::	
Tampa (t):	
Cota do N_{max} (CN_{max}): $C_T - F + h_{adol_1}$:	155,30 m
Cota do N _{min} (CN _{min}): C _T - F+ h _{minres} :	152,20 m
Altura Total do Reservatório (H _R) ; (h _{adot_1} + f + t) :	4,10 m
Altura poço de sucção (h poço):::	
Largura poço de sucção (L poço):	

Dimensionamento do diâmetro da tubulação de saida do RAP

Perda de carga maxima:	J		2,00	m/Km
Ecu. perda de carga unitaria (D-W) J :	f V ²	:	0,002	m/m
	D 2g			
Rugosidade e (D-W) tubulação FoFo :	е	:	0,30	mm
Vazão Maxima (QMH _{ZP-02} + QMD _{ZP-01} + Q_Inc)	Q _{Max}	:	75,13	L/s
fator de atrito. Ecu. De Swmee (Livro Porto, pg 46)			()
$\mathbf{f} = \left\{ \left(\frac{64}{Re} \right)^{8} + 9.5 \times \left[Ln \left(\frac{\epsilon}{3.7 \times D} + \frac{5.74}{Re^{0.9}} \right) \right] \right\}$	$\left(\frac{2500}{\text{Re}}\right)^{6}$		()
(distribution)		:	0,020	
temperatura	: T	:	30	°C
Viscosidade cinematica	: V	:	8,04E-07	m²/s
Numero de Reynolds	: Re	-	347.442	
Velocidade	; V	:	0,82	m/s
	J	:	0,0020	m/m
Diâmetro calculado	: D	:	342,42	mm
Diâmetro comercial assumido	: D	:	350	mm

Dimensionamento do diâmetro da tubulação vertical ou extravasor - RAP

Dillerization ten ten manner e tra in							
Diâmetro adotado			:	D	:	250	mm
Razão de semelhança			:	Ā	:	D/50	
Ecuação de escoamento (Livro Azevedo, pg 602)	:	Q*	:_	97 x Å ^{5/3}	:	90.37	L/s
				60			
O*: canacidade de escoamento major o	que a vazão	i de entra	ada				

2.3.3 Reservatório Projetado REL -2 (ETA)

Formato: Caixa dagua com base quadrada apoiado sobre 4 pilares

Volume Comercial Adotado (V)	: [250.00 m ³
Lado Interna da Base (L _{BASE})	- :	7.00 m
Altura da Lâmina D'água (ho) (Área _{bese} m²)	- ;	5.10 m
Altura da Lâmina D'água Adotada (hadol)	:	5.10 m
Cota do Terreno de Reservação (C _Y)	- :	159.19 m
Altura do fuste (F)		16.50 m
Laje de fundo (h _{LF})	:	0.30 m
Altura Mínima no Reservatório (h _{minRes})		0.20 m
Altura de Água (h) : (F + h Ador + hminRes)	:	21.90 m
Altura Mínima de Água (h _{min}) : (F + h _{minRes})	:	17.00 m
Folga de Nivel Interna (f)	- :	0.30 m
Tampa (t)	. :	0.10 m
Cota do N _{máx} (CN _{máx}): C _R + h	:	181.09 m
Cota do N _{min} (CN _{min}): C _R + h _{min} .	:	176.19 m
Altura Total do Reservatório (H _R): (h + f + t)	:	22.30 m

Calculo do diâmetro da tubulação de saida do REL

Perda de carga maxima	: J		2.00	m/Km
Есш. perda de carga unitaria (D-W) - J	: f V²	_ :	0.002	m/m
	D 2g			
Rugosidade e (D-W) tubulação FoFo	: е	:	0.30	mm
Vazão Maxima (QMH _{zp-03})	Q MH	:	44.05	L/s
fator de atrito. Ecu. De Swmee (Livro Porto,	pg 46)			
$f = \left\{ \left(\frac{64}{Re} \right)^{8} + 9.5 \times \left[\ln \left(\frac{\epsilon}{3.7 \times D} + \right) \right] \right\}$	$\frac{5.74}{\text{Re}^{0.7}}$ $\left[-\left(\frac{2500}{\text{Re}}\right)^6\right]^{-16}$			
1	; f	:	0.021	
temperatura	: T	:	30	°C
Viscosidade cinematica	······································	:	8.04E-07	m²/s
Numero de Reynolds	: Re	:	254,603	
Velocidade	: V	:	0.75	m/s
	J	;	0.0022	m/m
Diâmetro calculado	: D	:	273.99	mm
Diâmetro comercial assumido	:: D	:	300	mm

Diâmetro adotado extravasor			:	D	:	200	mm
Razão de semelhança			:	λ	:	D/50	
Ecuação de escoamento (Livro Azevedo, pa 602)	:	Q*	: _	97 x λ ^{5/3}	-:	51.73	L/s
Q*: capacidade de escoamento maior que a	vazão	de entra	ıda				

2,3.4 Dimensionamento do Reservatório RAP-2

Reservatório Projetado ZP-1

Formato: Caixa dágua com base retangular apoiado

Volume Adotado RAP-02 (Serve para recalcar ate RAP_E 500 m³)	40.0 m3
Lado 1 Interna da Base (L1 _{BASE})	6.00 m
Lado 2 Interna da Base (L2 _{BASE})	3.00 m
Altura de Lâmina D'égua (ho): (VRAP-01) m³ (L18ASE x L28ASE) m²	. 2.22
Altura da Lâmina D'água Adotada (hadot_t))	2,20 m
Cota do Terreno de Reservação (C _T)	123.50 m
Laje de fundo (h _{LF})	0.20 m
Altura Mínima no Reservatório (h _{minRes})	0.20 m
Altura de Água (h):	2.00 m
Altura da Lâmina D'água Adotada (hadot_2) :	3.20 m
Folga de Nivel Interna (f)	0.40 m
Tampa (t)	
Cota do N_{max} (CN_{max}): $C_R + h$	125.70 m
Cota do N_{min} (CN_{min}): $C_R + h_{min}$	123.70 m
Altura Total do Reservatório (H _R): (h + f + t)	2.60 m
Altura poço de sucção (h poço)	1.00 m
Largura poço de sucção (L poço)	0.80 m

Dimensionamento do diâmetro da tubulação vertical ou extravasor - RAP

Dimensionamento ao aiametro aa t	uoutação vi	erucai o	и ехи	avasor - nz	1/_		
Diâmetro adotado			:	D	- : -	150	mm
Razão de semelhança			:	λ	:	D/50	
Equação de escoamento (Livro Azevedo, pg 602)	:	Q*	; _	97 x ¼ 5/3	:	25.20	L/s
Q*: capacidade de escoamento maior	que a vazão	de entra	ada	60			

Dimensionamento do Sistema de Tratamento (20 anos)

Estação Elevatória de Água Bruta (EEAB-01)

(MUNICIPIO DE JAGUARIBE - CE)

	de Adução		
Tempo de Bombeamento (T _b)		:	18 h
Coef. dia de maior consumo (k ₁)		:	1,2
		:	327.46 m ³ /l
Vazão do Sistema	; Q _{AAB(20)}	:	90.96 L/s
		:	0.09096 m ³ /s
2. Adutora de Água Bruta - AAE	3-1		
Caminhamento Adutora existente		:	1,007.95 m
Recobrimento		-	0.90 m
Subida CDV		- 1	6.95 m
Comprimento Total		•	1,015.80 m
Diâmetro Econômico (D')	-: 1,3 x $(X/24)^{^{0.5}}$ x $Q^{0.5}$:	365,00 mm
Diâmetro Existente (D)	Diâmetro Comercial	:	400 mm
	Diâmetro Interno	:	416.4 mm
	Material	;	FoFo
	Q		
Velocidade (V)	$\pi \times (D/2)^2$	-	0.67 m/s
Norma SPO-14 (5.3.8) e SPO-16 (5.4.16.4) da CAGEC	, ,	ls.	
3. Estação Elevatória de Água B			
or cotages cicratoria ac Agua i	Bruta - EEAB		
Cota de Recalque		:	164.45 m
	- ;	:	164.45 m 114.31 m
Cota de Recalque	-: C _R	:	
Cota de Sucção	C _R C _S C _R - C _S	: : : : : : : : : : : : : : : : : : : :	114.31 m
Cota de Recalque Cota de Sucção Desnivel Geométrico (Hg)	C _R C _S C _R - C _S	:	114.31 m
Cota de Recalque Cota de Sucção Desnivel Geométrico (Hg) 4. Cálculo das Perdas de Carga	-: C _R -: C _S -: C _R - C _S na Tubulação ulação de Recalque	: :	114.31 m
Cota de Recalque	C _R C _S C _R - C _S na Tubulação ulação de Recalque ns (C) : FoFo	: : : : : : : : : : : : : : : : : : : :	114.31 m 50.14 m
Cota de Recalque Cota de Sucção Desnível Geométrico (Hg) 4. Cálculo das Perdas de Carga 4.1. Perdas de Carga ao Longo da Tubu Coeficiente da Fórmula de Hazen-Willian	C _R C _S C _R - C _S na Tubulação ulação de Recalque ms (C) : FoFo		114.31 m 50.14 m
Cota de Recalque	C _R C _S C _R - C _S na Tubulação ulação de Recalque ms (C) : FoFo	in the second second	114.31 m 50.14 m 100 1.0
Cota de Recalque Cota de Sucção Desnivel Geométrico (Hg) 4. Cálculo das Perdas de Carga 6.1. Perdas de Carga ao Longo da Tubu Coeficiente da Fórmula de Hazen-Willian Coeficiente do Material (K) Espessura da Tubulação (E) Velocidade (V)	C _R C _S C _R - C _S na Tubulação ulação de Recalque ns (C) : FoFo	The state of the s	114.31 m 50.14 m 100 1.0 6.3 mm 0.67 m/s
Cota de Recalque	C _R C _S C _R - C _S na Tubulação ulação de Recalque ns (C) : FoFo	The second transfer	114.31 m 50.14 m 100 1.0 6.3 mm

4.2. Perdas de Carga na Tubulação de Sucção

Material da tubulação:		FoFo
Coeficiente da Fórmula de Hazen-Williams (C)	:	100.0
Diâmetro Comercial Adotado (D)	:	400 mm
Diâmetro Interno (D)	:	416.4 mm
Velocidade (Vs)	:	0.67 m/s
Perda de Carga Distribuída (j) : 10,643 x Q ^{1,85}	:	0.001794 m/m
Comprimento (Ls)	:	0,5 m
Perda de Carga por Comprimento (Js) -: jt X L	:	0. 00 1 m

4.3. Perdas de Carga Localizada

Aceteração da arquidade (a)

Q ^{tote} 02 09 01 01	x [x [x [x [0.30 0.40 2.50 0.30		0.60 3.60 2.50 0.30
09 01 01	x [x [x [0.40 2.50 0.30] :] :] :	3.60 2.50
01 01] x [2.50 0.30]:	2.50
01	x[0.30]:	
	_ ``]:	0.30
01]×[1.30	٦.	
]:	1.30
11]×[0.60] :	6.60
06]×[0.10]:	0,60
02]×[0.20]:	0.40
01]×[1.00]:	1.00
			:	16.90
(_r x ()	<i>f</i> ² /	2g)	:	. 0,38 m
h,	+	h _s	:	0.38 m
	06 02 01	06 x 02 x 01 x 7, x (V ² /	06 × 0.10 02 × 0.20 01 × 1.00	06

Perda barrilete saida (hfi):	h _{foarilete}	:	0.38 m
Perda de Carga Total (H _J):	J+ h _{fi}	:	2.21 m

5. Cálculo da Altura Manométrica

Perda de Carga Total (H _j)		:	2.21 m
Desnivel Geométrico (Hg)		:	50.14 m
Altura Manométrica (H _{man} .):	(H ₉ + H ₁)	:	52.35 mca

6. Análise da Sobrepressão na Tubulação

Coeficiente do Material (K)		1.0
-------------------------------	--	-----

Espessura da Tubulação (E)	: [6.3 mm
Diâmetro da Tubulação (D)	;	416 mm
9900 9900		925.62 m/s
Celeridade (C)	,5	320,02 1143
Acrescimo de Pressão (H _a) C x V / g	:	63.02 m.c.a.
Pressão Máxima de Solicitação ($P_{max.}$) : $H_a + H_{man.}$:	115.37 m.c.a.

7. Dimensionamento da(s) bomba(s)

Segundo José Maria de Azevedo Netto, deve-se admitir, na prática, uma folga para os motores elétricos. Os seguintes acréscimos são recomendáveis:

Para as bombas até 2 cv	50 %
Para as bombas de 2 a 5 cv	30 %
Para as bombas de 5 a 10 cv	20 %
Para as bombas de 10 a 20 cv	15 %
Para as bombas de mais de 20 cv	10 %

Os motores elétricos brasileiros são normalmente fabricados com as seguintes cv: 1/4; 1/3; 1/2; 3/4; 1; 1 1/2; 2; 3; 5; 6; 7 1/2; 10; 12; 15; 20; 25; 30; 35 cv: 40; 45; 50; 60; 80; 100; 125; 150; 200 e 250

Para potências maiores os motores são fabricados sob encomendas. Nos catálogos dos fabricantes há potências de motores elétricos fabricados diferentes dos especificados acima.

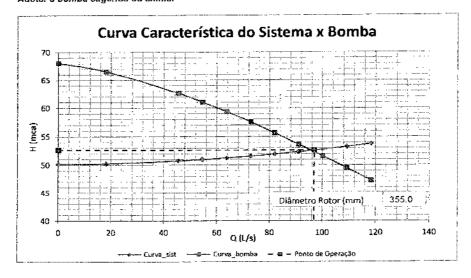
7.1. Quadro Geral

Número de Bombas Previstas (N)	:	02
Número de Bombas Operando Simultaneamente (n)	:	01
Rendimento Bomba (ηB)	:	74.11%
Rendimento Motor (ηM)	:	93.20%
Rendimento do Conjunto Elevatório (η)	:	69.07%
Vazão da Bomba (Q)	:	96.89 ∐s
Peso específico da água (γ)	:	1.00 Kg f/L
Pressão atmosférica (pary)	:	10.21 mca
Pressão de vapor a 30°C (p _{v/γ})	:	0.43 mca
Fator de Serviço (FS)	:	1.15
Potěncia da Bomba (Po)	:	112.59 CV
Cota do Eixo da Bomba (C _{EB})	:	114.00 m
Cota de Sucção (C _S)	:	114.31 m
Perda de Carga Localizada (h _f)	:	0.00 m
NPSH disponivel (NPSH _d): $p_{al\gamma}$ - $p_{vl\gamma}$ - h_{f^+} (C_{EB} - C_{S})	:	10.09 m

327.46 m³/h

7.2. Quadro-Resumo das características das bombas

Potência Adotada (P) -----



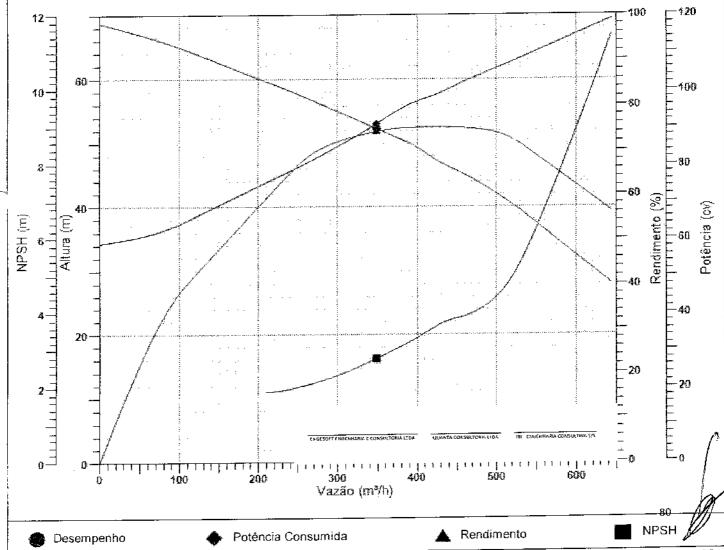
Altura Manométrica (H_{man}) ------

7.3. Bombas Sugeridas

7.5. Domous ongermas		
Tipo de Bomba Centrífuga: EBARA SUBMERSÍVEL	:	150DSC4 BC-46120
Potência	:	120.00 CV
Vazão de Serviço	:	348.79 m ³ /h
Altura Manométrica p/ a Vazão de Serviço	:	52.35 mca
Diâmetro do Rotor	;	355.0 mm
Velocidade do rotor	;	1,800 rpm
NPSH requerido (NPSH _r)	:	2.78 m
Fłanges de sucção	:	- mm
Flanges de recalque	:	150 mm
Momento de Inércia da Bomba (I_B): 0,038 x (P_{kW}/N^a) $^{0.96}$:	0.51620 kg.m²
Momento de Inércia do Motor (I_M) : 0,0043 x (P_{kW}/N) $^{1.48}$:	1.36720 kg.m²
Momento de Inércia do Conjunto Elevatório ($I_{\rm B}$ + $I_{\rm M}$)	:	1.88340 kg.m²

* Adotar a bomba sugerida ou similar

列



CURVA DE DESEMPENHO

Cliente							Data
SAA JAGUARIBE EE	4B-20A					<u> </u>	23-02-2016
Produto 150DSC4 BC-46120	Potência (cv) 120.00	Freq. (Hz) 60.00	N° Pólos 4	Ø Rotor (mm) 355.00	Sub. Máx. (m) 35	Material Ferro Fundido	Cos f (100%) 87
Motor ZDKBR690438	Tensão (V) 380	Ind. Prot.	Fases	Rotação (rpm) 1800	M. Inércia (kg.m²) 1.4094	Rend. (100%) 93,20	Corr. Nom. (A) 168
Cabos Controle 14 AWG	Cabos Força	Classe Isol.	Fator serv.	Nº Part, Hora	Тетр, Мах.ºС 40.00	№ Сыгvа B1156-1	Corr. Part. (A) 1332

	- Pento Selecionado -		Fechado
Vazão	Altura	NPSH	
 348.79 m³/h	52.35 m	2.78 m	
Potência Cons.	Rend. Hidr.	R. Conj.	
91.02 cv	74.11 %	69.07 %	

<u>Dimensionamento do Sistema de Tratamento (20 anos)</u> Estação Elevatória de Água Tratada (EEAT-01)

(MUNICIPIO DE JAGUARIBE - CE)

1. Resumo do Quadro de Vazão d	e Adução		
Tempo de Bombeamento (T _b)		:	18 h
Coef. dia de maior consumo (k ₁)		:	1.2
		:	93.39 m ³ /h
Vazão do Sistema:	Q _{AAT-01 (20)}	:	25.94 L/s
		;	0.02594 m³/s
2. Adutora de Água Tratada - AA1	-01 (RAP_E 500 M	3 - E	REL)
Caminhamento Perfil		: [17.52 m
Recobrimento		: [1.00 m
Subida REL-01		: {	16.68 m
Comprimento Total		:	35.20 m
Diâmetro Econômico (D'):	$1.3 \times (X/24)^{-1/4} \times Q^{0.5}$:	195.00 mm
Diâmetro Adotado (D)	Diâmetro Comercial	:	200 mm
	Diâmetro Interno	: -	211.2 mm
	Material	:	FoFo
Velocidade (V)	π x(D/2)	. : Ms.	0.74 m/s
3. Estação Elevatória de Água Tra	tada - EEAT01		
Cota de Recalque:	C_R	;	167.29 m
Cota de Sucção::	Cs	:	150.73 m
Desnível Geométrico (Hg)	C _R - C _S	:	16.56 m
4. Cálculo das Perdas de Carga na 4.1. Perdas de Carga ao Longo da Tubula	-		
Coeficiente da Fórmula de Hazen-Williams	(C) ; FoFo	: [100
Coeficiente do Material (K)		: [1.0
Espessura da Tubulação (E)		; [5.4 mm
Velocidade (V)		:	0.74 m/s
Perda de Carga Distribuída (j)::-	10,643 x Q ^{1,85} D ^{4,87} x C ^{1,85}	:	0.004805 m/m
Perda de Carga por Comprimento (J):	j _L x L	:	0.17 m

4.2. Perdas de Carga na Tubulação de Sucção

FoFo Material da tubulação:----Coeficiente da Fórmula de Hazen-Williams (C) -----100.0 Diâmetro Comercial Adotado (D) -----200 mm Diâmetro Interno (D) -----211.2 mm Velocidade (Vs) ------0.74 m/s $10,643 \times Q^{1,85}$ 0.004805 m/m Perda de Carga Distribuída (j) -----: : ---8.3 m Comprimento (Ls)-----Perda de Carga por Comprimento (Js) -: $j_L \times L$ 0.040 m

4.3. Perdas de Carga Localizada

Aceleração da gravidade (g) ----- : 9.81 m/s^2

PEÇA		Qtde		K _{UNIT.}		K _{TOTAL}
Crivo]:[01_] x [0.75] :	0.75
Curva de 90°]:[03] x [0.40] :	1.20
Valvula de gaveta aberta	<u>]:</u> [01	x[0.20] :	0.20
Tê passagem dîreta]:[01_] x [0.60]:	0.60
Redução gradual		01	x [0.15] :	0.15
Coeficiente K de Sucção			<u>-</u>		- :	2.90
Perda de Carga na Sucção (h _s)		K _s x (Vs ² /	2g)	:	0.08 m

RECALQUE

REC	<u>ALQUE</u>			
PEÇA	Q ^{lde}	K _{UNIT.}		K _{TOTAL}
Ampliação gradual :	02	× 0.30	:	0.60
Curva de 45°	05	x 0.20	:	1.00
Valvula de retenção	01	x 2.50	:	2.50
Tê passagem direta	01	x 0.60	:	0.60
Junção	01	× 0.40	:	0.40
Curva de 90°	03	× 0.40	:	1.20
Valvula de gaveta aberta :	01	x 0.20	:	0.20
Saida de canalização	01	x 1.00	:	1.00
Coeficiente K de Recalque			. :	7.50
Perda de Carga no Recalque (h _r)	K _r x (V	/ ² / 2g)	:	0.21 m
Perda de Carga Localizada (h _f)::	h _r	+ h _s	:	0.29 m
4.4. Perda de Carga Total				
Perda de carga Sucção (hfs):	Js	+ h _{fs}	:	0.12 m
Perda barrilete saida (hfi):	h _{fl}	barrilete	:	0.21 m
Perda de Carga Total (H _J):	J ∟ +	his + h ₆	:	0.50 m
5. Cálculo da Altura Manométrica	3			
Perda de Carga Total (H _j)			:	0.50 m
Desnível Geométrico (Hg)			:	16.56 m
Altura Manométrica (H _{man}):	(H _g	+ H _j)	:	17.06 mca
6. Análise da Sobrepressão na Tu	ubulação		•	
Coeficiente do Material (K)				1.0
Espessura da Tubulação (E)			:	5.4 mm
Diâmetro da Tubulação (D)			:	211 mm
	9	900	,	4.050.00/-
Celeridade (C):	(48,3 + 1	(xD/E) ^{0,5}	:	1,058.89 m/s
Acrescimo de Pressão (Ha):	Сх	V/g	:	79.93 m.c.a.
Pressão Máxima de Solicitação (P _{máx.}) :	H _a 4	⊦ H _{man.}	:	96.99 m.c.a.

7. Dimensionamento da(s) bomba(s)

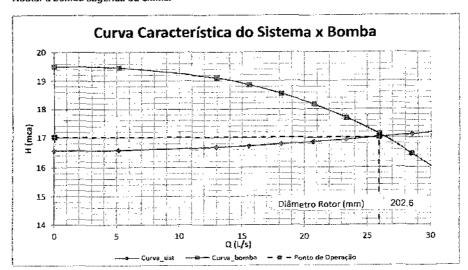
Segundo José Maria de Azevedo Netto, deve-se admitir, na prática, uma folga para os motores elétricos. Os seguintes acréscimos são recomendáveis:

Para as bombas até 2 cv	50 %
Para as bombas de 2 a 5 cv	30 %
Para as bombas de 5 a 10 cv	20 %
Para as bombas de 10 a 20 cv	15 %
Para as bombas de mais de 20 cv	10 %

Os motores elétricos brasileiros são normalmente fabricados com as seguintes cv: 1/4; 1/3; 1/2; 3/4; 1; 1 1/2; 2; 3; 5; 6; 7 1/2; 10; 12; 15; 20; 25; 30; 35 cv: 40; 45; 50; 60; 80; 100; 125; 150; 200 e 250

Para potências maiores os motores são fabricados sob encomendas. Nos catálogos dos fabricantes há potências de motores elétricos fabricados diferentes dos especificados acima.

7.1. Quadro Geral	
Número de Bombas Previstas (N)	02
Número de Bombas Operando Simultaneamente (n) :	01
Rendimento Bomba (ηB):	81.5%
Rendimento Motor (ηM)	89.5%
Rendimento do Conjunto Elevatório (η)	72.9%
Vazão da Bomba (Q) :	25.94 L/s
Peso especifico da água (y)	1.00 Kgf/L
Pressão atmosférica (pa/y)::	10.17 mca
Pressão de vapor a 30°C (p _{v/y}) :	0.43 mca
Fator de Serviço (FS)	1.20
Potência da Bomba (Po) ——————————————————————————————————	9.75 CV
Cota do Eixo da Bomba (C _{EB}) :	152.13 m
Cota de Sucção (C _S):	150.73 m
Perda de Carga Localizada (h _f) :	0.12 m
NPSH disponível (NPSH d):	8.22 m
7.2. Quadro-Resumo das características das bombas	
Potência Adotada (P):	10.00 CV
Vazão da Bomba (Q)	93.39 m³/h
Altura Manométrica (H _{man})::	17.06 mca



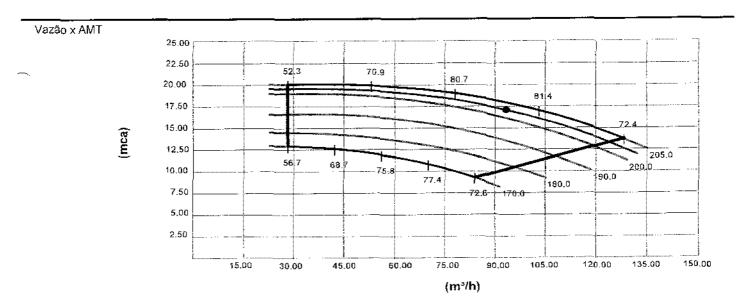
The C.P.L.

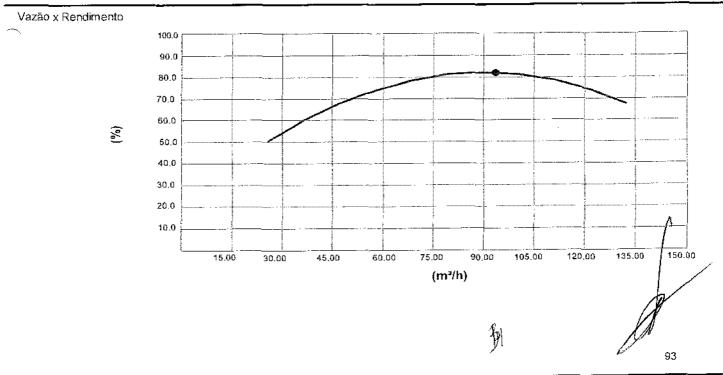
7.3. Bombas Sugeridas

Tipo de Bomba Centrifuga:	IMBIL OU SIMILAR	:	ITAP 80 - 200
Potência		:	10.00 CV
Vazão de Serviço		- :	93.4 m ³ /h
Altura Manométrica p/ a Vazão de Serviço -		:	17.1 mca
Diâmetro do Rotor		:	202.6 mm
Velocidade do rotor		:	1,730 rpm
NPSH requerido (NPSH _r)		:	3.04 m
Flanges de sucção ————————————————————————————————————		:	100 mm
Flanges de recalque		:	80 mm
Momento de Inércia da Bomba (I _B):	$0.038 \times (P_{kW}/N^3)^{0.96}$:	0.05326 kg.m²
Momento de Inércia do Motor (I _M)	$0.0043 \times (\ P_{kW}/N\)^{1.48}$:	0.03666 kg.m ^x
Momento de Inércia do Conjunto Elevatório	(I _B + I _M)	:	0.08992 kg.m²

* Adotar a bomba sugerida ou similar

M

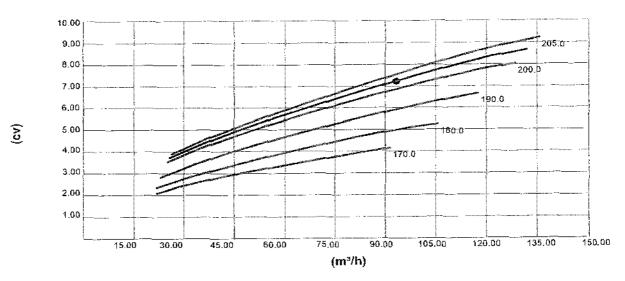



Gráficos de desempenho

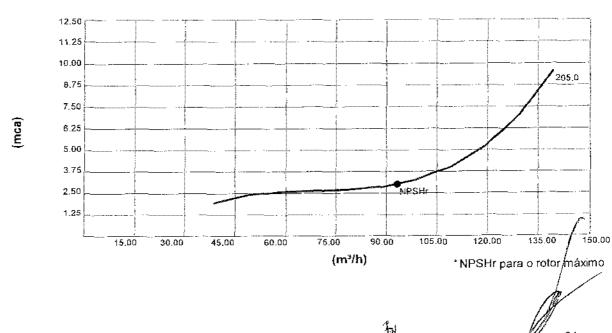
Ō		
	7110	
	713	
	100	
	Fis	
	- IVII	

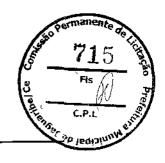
CEI V 3.0

Cliente	Projeto	Tag redipting
EEAT-01 - 20A	SAA JAGUARIBE	SAAE
Linha / Modelo	Rotação	Data
ITAP 80-200	1730 rpm	18 / 2 / 2015
√azē0	Altura manométrica total	Peso específico do fluido
93.40 m³/h	17.10 mca	1.00 kg/dm³
Diâmetro do rotor	Rendimento da Bomba	Fotência consumida
202.6 mm	81.8 %	7.23 cv


Gráficos de desempenho

₽¢	714	
	Fls	


CEIV 3.0


Cliente	Projeta	Tag Wnujcibal de Sal
EEAT-01 - 20A	SAA JAGUARIBE	SAAE
Linha / Modelo	Rotação	Data
ITAP 80-200	1730 rpm	18 / 2 / 2015
Vazão	Altura manométrica total	Peso específico do fluido
93.40 m³/h	17.10 mca	1.00 kg/dm³
Diâmetro do rotor	Rendimento da Bomba	Potência consumida
202.6 mm	81.8 %	7.23 CV

<u>Dimensionamento do Sistema de Tratamento (20 anos)</u> Estação Elevatória de Água Tratada (EEAT-02)

(MUNICIPIO DE JAGUARIBE - CE)

1. Resumo do Quadro de Vazão de Adução		
Tempo de Bombeamento (T _b)		18 h
Coef, dia de maior consumo (k ₁)	·····	1.2
	:	93.39 m ³ /f
Vazão do Sistema: Q _{AAT-02 (ZF}	2-1) (20)	25.94 L/s
	:	0.02594 m ³ /s
2. Adutora de Água Tratada - AAT-02 (RAP_	40M3 - RAP	_E 500 m³)
Caminhamento Perfil	:	1,656.00 m
Recobrimento	:	0.96 m 3.45 m
Subida REL-03 Comprimento Total	- [1,660.41 m
Diâmetro Econômico (D'): 1,3 x (X/24)*1/	4 x Q ^{u,5} :	195.00 mm
Diâmetro Adotado (D) Diâmetro Co	omercial :	200 mm
Diàmetro I	nterno :	204.2 mm
Mater	ial :	PVC DEFOFO
Q		
Velocidade (V)π x (D /	2)2	0.79 m/s
* Norma SPO-14 (5.3.8) e SPO-16 (5.4.16.4) da CAGECE sugere velocidade m	•	
3. Estação Elevatória de Água Tratada - EEA	T02	
Cota de Recalque: C _R	:	155.05 m
Cota de Sucção: C _S	:	123.70 m
Desnível Geométrico (Hg): C _R - C	S _s :	31.35 m
4. Cálculo das Perdas de Carga na Tubulação	•	
4.1. Perdas de Carga ao Longo da Tubulação de Recalq	ue	
Coeficiente da Fórmula de Hazen-Williams (C)::	PVC : DEFOFO :	130
Coeficiente do Material (K)	; [18.0
Espessura da Tubułação (E)	<u></u> : [8.9 mm
Velocidade (V)		0.79 m/s
Perda de Carga Distribuída (j)		0.003485 m/m
Perda de Carga por Comprimento (J) : i. ×		5,79 m

The C.P.L.

4.2. Perdas de Carga na Tubulação de Sucção

FoFo Material da tubulação:---Coeficiente da Fórmula de Hazen-Williams (C) -----100.0 Diâmetro Comercial Adotado (D) ---- : 200 mm Diàmetro Interno (D) ------:: 211.2 mm Velocidade (Vs) ------0.74 m/s 10,643 x Q^{1,85} Perda de Carga Distribuída (j) -----: 0.004805 m/m D^{4.87} x C^{1.85} 1.4 m Comprimento (Ls)-----0.007 m Perda de Carga por Comprimento (Js) →: j∟ x L

4.3. Perdas de Carga Localizada

Aceleração da gravidade (g) ------ 9.81 m/s²

SUCÇÃO

PEÇA		Qtde		K _{UNIT.}		K_{TOTAL}
Crivo]:[01] x [0.75]:	0.75
Curva de 90°	_]:[_	01	_] x[0.40]:	0.40
Valvula de gaveta aberta	:	01	x[0.20] :	0.20
Redução gradual]:[_	02]×[0.15] :	0.30
Coeficiente K de Sucção					- :	1.65
Perda de Carga na Sucção (h _s)	K	(s x (Vs^2 /	2g }	:	0.05 m

h

REG	CALQUE		100	د
PEÇA	Q ^{tde}	K _{UNIT.}	K _{TOTAL}	& legiolnum
Ampliação gradual	: 02	× 0.30	0.60	
Curva de 45°	: 03	x 0.20	0.60	
Valvula de retenção	: 02	× 2.50	5,00	
Tê passagem direta	: 08	x 0.60	: 4,80	
Curva de 90°	: 11	× 0.40	4.40	
Curva de 22,5°	: 03	x 0.10	0.30	
Valvula de gaveta aberta	: 01	x 0.20	: 0,20	<u> </u>
Saida de canalização	: 01	x 1.00	; 1.00	
Coeficiente K de Recalque			16.90	
Perda de Carga no Recalque (h,)	$K_r \times (V^2)$	/ 2g)	: 0.54 m	
Perda de Carga Localizada (h _f)	; h _c +	⊢ h _s	: 0.59 m	
4.4. Perda de Carga Total				
Perda de carga Sucção (hfs)	: Js +	⊦ h _{fs}	: 0.05 m	
Perda barrilete saida (hfi)	h _{fba}	smilete	; 0.54 m	
Perda de Carga Total (H _J)	; JL +	իտ + ի տ	6.38 m	
5. Cálculo da Altura Manométrio	a			
Perda de Carga Total (H _i)			6.38 m	
Desnível Geométrico (Hg)			; 31.35 m	
Altura Manométrica (H _{man})	: (H _g -	+ H _i)	: 37.73 mca	
6. Análise da Sobrepressão na T	ubulação			
Coeficiente do Material (K)			18.0	
Espessura da Tubulação (E)			8.9 mm	
Diâmetro da Tubulação (D)			204 mm	
Coloridate (C)	99	00	: 460.94 m/s	
Celeridade (C)	(48,3 + K	x D / E) ^{6,5}	. 400.24 (185	
Acrescimo de Pressão (H _e)		V/g	; 37.22 m.c.a.	
Pressão Máxima de Solicitação ($P_{max_{i}}$)	: H _a +	H _{man.}	; 74.95 m.c.a.	

7. Dimensionamento da(s) bomba(s)

Segundo José Maria de Azevedo Netto, deve-se admitir, na prática, uma folga para os motores elétricos. Os seguintes acréscimos são recomendáveis:

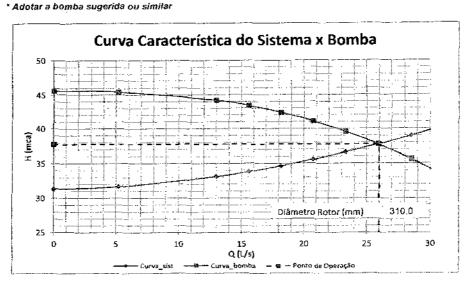
Para as bombas até 2 cv	50 %
Para as bombas de 2 a 5 cv	30 %
Para as bombas de 5 a 10 cv	20 %
Para as bombas de 10 a 20 cv	15 %
Para as bombas de mais de 20 cv	10 %

Os motores elétricos brasileiros são normalmente fabricados com as seguintes cv: 1/4; 1/3; 1/2; 3/4; 1; 1 1/2; 2; 3; 5; 6; 7 1/2; 10; 12; 15; 20; 25; 30; 35 cv: 40; 45; 50; 60; 80; 100; 125; 150; 200 e 250

Para potências maiores os motores são fabricados sob encomendas. Nos catálogos dos fabricantes há potências de motores elétricos fabricados diferentes dos especificados acima.

Número de Bombas Previstas (N)	02
Número de Bombas Operando Simultaneamente (n)	. 01
Rendimento Bomba (ηB)	72.8%
Rendimento Motor (ηM)	92.4%
Rendimento do Conjunto Elevatório (η)	67.3%
Vazão da Bomba (Q)	: 25.98 L/s
Peso específico da água (γ):	1.00 Kgf/L
Pressão atmosférica (pa/y)	10.20 mca
Pressão de vapor a 30°C (p _{v/y})	0.43 mca
Fator de Serviço (FS) :	1.15
Potência da Bomba (Po) ——————————————————————————————————	22.32 CV
Cota do Eixo da Bomba (C _{EB}) :	124.12 m
Cota de Sucção (C _s)	123.70 m
Perda de Carga Localizada (h _r) :	0.05 m
NPSH disponivel (NPSH $_{d}$): $p_{a/y} - p_{v/y} - h_{f^{-}}$ ($C_{E8} - C_{S}$)	9.30 m

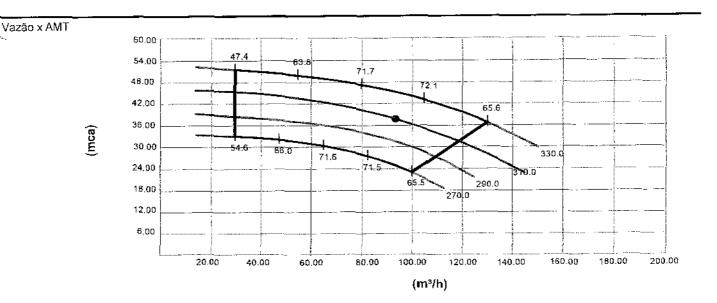
7.2. Quadro-Resumo das características das bombas

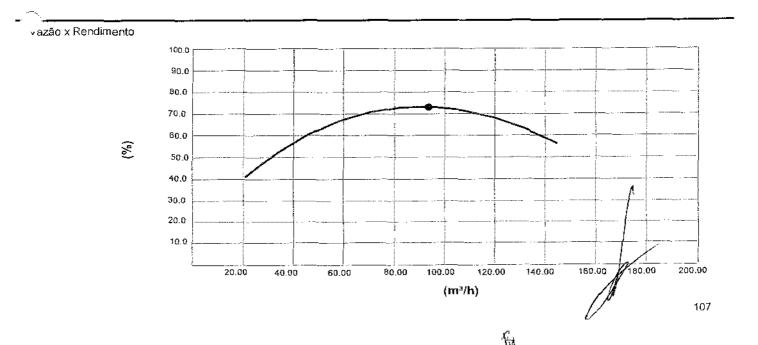

Potência Adotada (P)	:	25.00 CV
Vazão da Bomba (Q)	:	93.39 m ³ /h
Altura Manamátrica (H.)		37.7 mca

7.3. Bombas Sugeridas

Tipo de Bomba Centrifuga:	IMBIL OU SIMILAR	:	ITAP 80-330
Potência		:	25.00 CV
Vazão de Serviço		:	93.51 m ³ /h
Altura Manométrica p/ a Vazão de Serviço		:	37.7 mca
Diâmetro do Rotor		:	310.0 mm
Velocidade do rotor		:	1,730 rpm
NPSH requerido (NPSH _r)	~	:	3.09 m
Flanges de sucção		:	100 mm
Flanges de recalque		:	80 mm
Momento de Inércia da Bomba (I _B);	$0.038 \times (P_{kW}/N^3)^{0.96}$;	0.12836 kg.m²
Momento de Inércia do Motor (I _M):	$0.0043 \times (P_{kW}/N)^{1.48}$:	0.14226 kg.m²
Momento de Inércia do Conjunto Elevatório	(I _B + I _M)	:	0.27062 kg.m²
* Adotar a bomba sugerida ou similar			

D

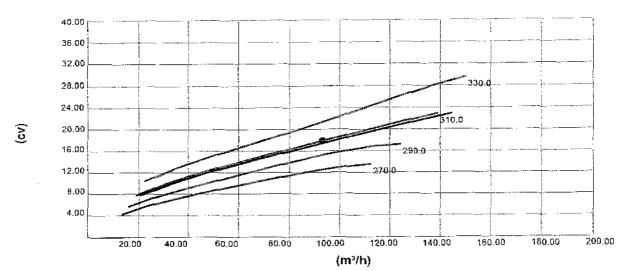



Gráficos de desempenho

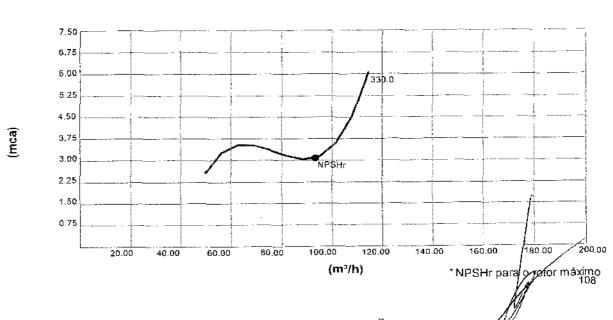
Programmente de Licitado Programmente de Licit

CELV 3.0

Cliente	Projeto	Tag
SAA JAGUARIBE	EEAT02_20A	SAAE
Linha / Modelo	Rotação	Data
iTAP 80-330	1730 rpm	9 / 3 / 2016
Vazão	Altura manométrica total	Peso específico do fluido
93.51 m³/h	37.73 mca	1.00 kg/dm³
Ametro de retor	Rendimento da Bomba	Potência consumida
310.0 mm	72.8 %	17.95 cv

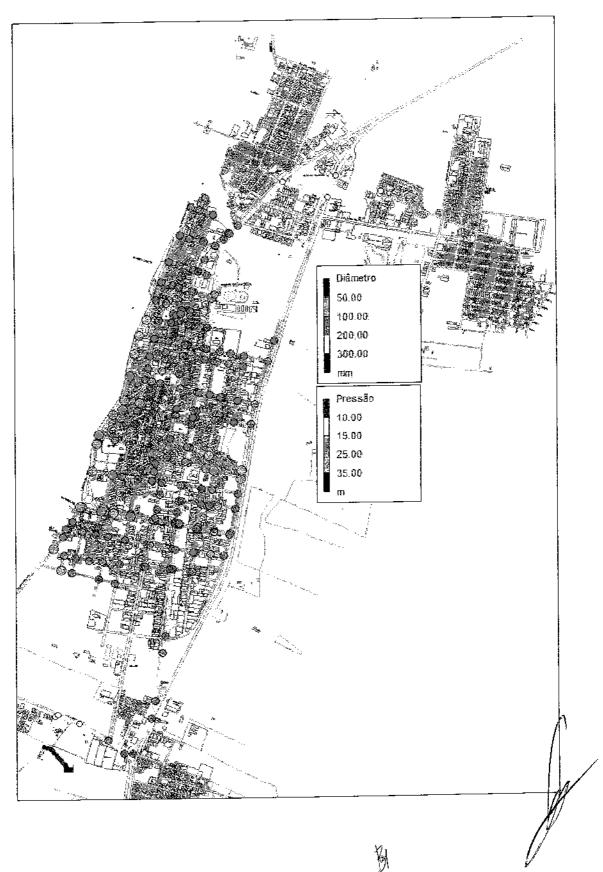

Gráficos de desempenho

C.P.L eligible


CEI V 3.0

1: IE	Projeto	Tag
SAA JAGUARIBE	EEAT02_20A	SAAE
Linha / Modelo	Rotação	Data
ITAP 80-330	1730 rpm	9 / 3 / 2016
Vazão	Altura manométrica total	Peso específico do fluído
93.51 m³/h	37.73 mca	1.00 kg/dm³
Diâmetro do rotor	Rendimento da Bomba	Potência consumida
310.0 mm	72.8 %	17.95 cv

Vazão x Potência consumida



Dimensionamento Redes de Distribuição

A continuação se apresentam os resultados hidráulicos do programa Epanet2.0 para as redes de distribuição de água dimensionadas para cada zonas de pressão dessa etapa: ZP02

Rede Zona de pressão 02

September of Participation of the Participation of

ZONA DE PRESSÃO 02 (ZP-02)

	A DE RESULTADOS -				<u> </u>
NÓ	CONSUMO (L/s)	COTA (m)		PRESSÃO (m)	OBSER.
Nó 1	0.16	120.06	143.59	·	—·——·——·—
Nó 2	0.14	120.04	143.06	23.02	
Nó 3	0.14	121.60	143.06	21.46	<u> </u>
Nó 4	0.21	122.10	143.57	21.47	
Nó 5	0.20	119.34	143.25	23.91	
Nó 6	0.13	118.71	143.06	24.35	
Nó 7	0.11	118.40	143.04	24.64	
Nó 8	0.08		143.03	22.62	
 Nó 9	0.16	-1		of the second	
Nó 10	0.16				
Nó 11	0.19		÷	+	
No 12	0.20	ţ			
Nó 13	0.07	-			(
Nó 14	0.15	/	· · · · · · · · · · · · · · · · · · ·		
Nó 15	0.12		A CARLO STATE OF THE STATE OF T		
Nó 16	0.12				
		,	÷		<u> </u>
Nó 17	0.15	+			
Nó 18			<u> </u>	<u>· </u>	
Nó 19			· 		+
Nó 20	0.16		<u> </u>		:
Nó 21	0.11	+	·		—· — — · · · · · · · · · · · · · · · ·
<u>Nó 22</u>	0.12	 		 	
Nó 23	0.11			*	i .
Nó 24	0.06	 	· · · · · · · · · · · · · · · · · · ·		
Nó 25	0.08	+			
Nó 26	0.11			s	
Nó 27	0.08				
Nó 28	0.10	122.21	., 		
Nó 29	0.08	122.67	1		<u></u>
Nó 30	0.11	121.76	142.63	20.87	
Nó 31	0.14	119.59	142.60	23.01	
Nó 32	0.08	120.84	142.94	22.10	
Nó 33	0.09	121.15	143.38	22.23	
 Nó 34	0.13	116.81	142.94	26.13	L
Nó 35	0.08	116.44	142.53	26.09	
Nó 36	0.11	116.61		25.61	
Nó 37	0.09			25.00	
Nó 38	0.09		÷	·	
Nó 39	0.14	116.65	-ŀ·		
Nó 40	0.16			T:	
Nó 41	0.09		1	·	
Nó 42	0.09			+	
	0.13	§	4	· · · · · · · · · · · · · · · · · · ·	I " 7
Nó 43			·	÷	1
Nó 44	0.10	 	· · · ·		<u> </u>
Nó 45	0.16	118.11	. 141.4/	23.10	NI

N

J.	ermanente de	
Separate Sep	ermanente de 725	Elas I
1-	FIG	7
CHIERO.	C.P.L	\$\$\frac{1}{2}\frac{1}{
	ab legiple	

	A DE RESULTADOS -				ORSER CRANE
NÓ	CONSUMO (L/s)	COTA (m)	CARGA (m)	PRESSÃO (m)	OBSER.
Nó 47	0.17	117.06	141.42	24.36	
Nó 48	0.16	117.93	141.42	23.49	
Nó 49	0.11	118.86	141.67	22.81	
Nó 50	0.12	119.10	141.66	22.56	
Nó 51	0.07	120.85	141.88	21.03	
Nó 52	0.05	121.78	141.82	20.04	
Nó 53	0.07	121.51	141.73	20.22	
Nó 54	0.08	119.25	141.68	22.43	
Nó 55	0.08	121.27	141.92	20.65	
Nó 56	0.14		142.22	23.55	
Nó 57	0.12	117.71	142.59	24.88	:
Nó 58	0.09		ļ ·	21.62	
Nó 59	0.03		:	20.59	
Nó 60	0.02	!	`-	20.30	
Nó 61	0.03				
Nó 62	0.05				
Nó 63	0.07				
Nó 64	0.14	·[
Nó 65	0.06	—		+	+
Nó 66	0.02			÷ ·	
Nó 67	0.03			.:	
Nó 68	0.05	·• · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Nó 69	0.07		. 	j	· · · · · · · · · · · · · · · · · · ·
Nó 70	0.04		÷ · · · · - · · · · · · · · · · · · · ·		
Nó 71	0.10			The second of the second	· · · · · · · · · · · · · · · · · · ·
Nó 72	0.11		;	-	
Nó 73	0.06	4	* · · · · · · · · · · · · · · · · · · ·		
Nó 74	0.05			· · · · · · · · · · · · · · · · · · ·	l mark to the state of the stat
Nó 75	0.12		:		
Nó 76	0.08	.;		ļ	
Nó 77	0.10			; 	
Nó 78	0.15	; 			
Nó 79	0.15				
Nó 80	0.24				 -
Nó 81	0.09		:-	:	
Nó 82	0.12		.———		
j	0.11	ļ. — — — —			···································
Nó 83	0.10			 	; ,
Nó 84	.				t
Nó 85	0.16		÷		1
Nó 86	0.14	-t		d	
Nó 87	0.13	· •		de e a]
Nó 88	0.16	·			
Nó 89	0.10	•		-!	
Nó 90	0.15				· · · · · · · · · · · · · · · · · · ·
Nó 91	0.07			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Nó 92	0.13				1 1 1 1
Nó 93		120.62	144.97		<u> </u>

M

NÓ	CONSUMO (L/s)	COTA (m)	CARGA (m)	PRESSÃO (m)	OBSER,
Nó 94	0.11	120.76			
Nó 95	0.11	121.72	 	23.28	
	0.09	121.72	_	 	
Nó 96	0.09			21.62	·
Nó 97	0.13	ş			
Nó 98	0.09	1		· ····· ·	
Nó 99 Nó 100	0.10			:	
	0.09	125.87	L		,
Nó 101	0.09				
Nó 103 Nó 104	0.05	i	i	:	
Nó 104 Nó 105	0.07		:		
Nó 106	0.14		f		1
	0.14	\$	· · · · · · · · · · · · · · · · · · ·		
Nó 107					·!
Nó 108	0.14	121.29	·———		
Nó 109	0.07	<u> </u>			
Nó 110	0.08				
Nó 111	0.15				
Nó 112	0.19	ļ			{
Nó 113	0.19				
Nó 114	0.16	 	+	:	
Nó 115	0.12			·	
Nó 116	0.08	1			
Nó 117	0.14				· ·
Nó 118	0.14	·	· · · · · · · · · · · · · · · · · · ·		
Nó 119	0.16	1	f	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Nó 120	0.11	1		·· ·· · -	
Nó 121	0.17	4			
Nó 122	0.14	121.82	:		
Nó 123	0.15	120.62			
Nó 124	0.12				
Nó 125	0.14				
Nó 126	0.12				· — — · · · · · · · · · · · · · · · · ·
Nó 127	0.15			· · · · · · · · · · · · · · · · · · ·	
Nó 128	0.13	121.02			<u> </u>
Nó 129	0.11	116.63		··	
Nó 130	0.14	117.29			i
Nó 131	80.0			:	
Nó 132	0.13			!	<u> </u>
Nó 133	0.19		144.23	;	
Nó 134	0.12	1		23.99	· · · · · · · · · · · · · · · · ·
Nó 135	0.08	i		,	
Nó 136	0.12	117.02			
Nó 137	0.18	ţ	·- ·- ·	1	
Nó 138	0.21	119.76	:	-	,
Nó 139	0.14	118.67	7		···
Nó 140	0.11	117.10		T	<u></u> · ·
Nó 141	0.14	118.29	144.83	26.54	i

PLANILHA DE RESULTADOS -		NÓS		 -	ORSER. CENTRAL
NÓ			CARGA (m)	PRESSÃO (m)	OBSER.
Nó 142	0.17	123.57	144.89	21.32	
Nó 143	0.18	120.27	144.93	24.66	
Nó 144	0.04	118.00	144.72	26.72	
Nó 145	0.02	117.10	143.96	26.86	
Nó 146	0.11	125.11	145.69	20.58	
Nó 147	0.14	120.20	145.26	25.06	
Nó 148	0.12	118.15	145.01	26.86	
Nó 149	0.12	117.10	144.85	27.75	
Nó 150	0.09	118.14	144.83	26.69	
Nó 151	0.12	121.07	144.83	23.76	
Nó 152	0.11	121.64	144.85	23.21	
Nó 153	0.14	123.57	144.89	21.32	
Nó 154	0.18	123.04	145.01	21.97	·
Nó 155	0.20	121.16	145.27	24.11	,
Nó 156	0.16	126.19	145.54	19.35	
Nó 157	0.16	126.39	145.86	19.47	
Nó 158	0.11	124.14	145.59	21.45	
Nó 159	0.17	126.72	145.04	18.32	
Nó 160	0.12	125.83	144.92	19.09	
Nó 161	0.15	124.46	144.89	20.43	
Nó 162	0.06	121.44	144.89	23.45	
Nó 163	0.06	119.53	144.90	25.37	
Nó 164	0.12	120.95	144.90	23.95	
Nó 165	0.12	123.25	144.86	21.61	
Nó 166	0.14	122.56	145.04	22.48	
Nó 167	0.05	121.97	144.83	22.86	
Nó 168	0.03	119.00	144.82	25.82	
Nó 169	0.06	121.18	144.83	23.65	
Nó 170	0.08	121.58	144.83	23.25	
Nó 171	0.06	118.59	144.83	26.24	
Nó 172	0.19	126.81	145.43	18.62	
Nó 173	0.08	125.83	145.19	19.36	
Nó 174	0.11	128.43	145.80	17.37	
Nó 175	0.11	128.80	145.87	17.07	
Nó 176	0.11	128.02	146.62	18.60	
Nó 177	0.25	127.85	146.66	18.81	
Nó 178	0.09	125.28	146.26	20.98	
Nó 179	0.14	126.42	146.38	19.96	
Nó 180	0.09	121.93	146.08	24.15	
Nó 181	0.12	121.79	146.09	24.30	
Nó 182	0.09	122.82	146.09	23.27	
Nó 183	0.10	122.92	146.09	• • • • • • • • • • • • • • • • • • • •	1
Nó 184	0.11	125.86	146.03	20.17	
Nó 185	0.05	125.27	146.25	20.98	
Nó 186	0.08	126.83	145.17	18.34	ļ,
Nó 187	0.07		145.02	F	
Nó 188	0.02	126.07	145.02	18.95	L

M

PLANILHA	DE RESULTADOS -				
NÓ	CONSUMO (L/s)	COTA (m)	CARGA (m)	PRESSÃO (m)	OBSER,
Nó 189	0.10	124.02	144.86	20.84	
Nó 190	0.08	125.13	145.43	20.30	
Nó 192	0.00	151.50	152.16	0.66	Saida do reservatório
Nó 193	0.21	137.62	151.60	13.98	
Nó 194	0.06	136.96	151.54	14.58	
Nó 195	0.13	139.22	151.14	11.92	
Nó 196	0.12	134.57	150.54	15.97	
Nó 197	0.07	132.44	150.17	17.73	
Nó 198	0.11	131.43	150.01	18.58	
Nó 199	0.13	130.10	149.29	19.19	
Nó 200	0.15	130.32	148.98	18.66	
Nó 201	0.15	130.15	148.11	17.96	
Nó 202	0.19	130.42	147.83	17.41	
Nó 203	0.06	125.85	146.00	20.15	
Nó 204	0.13	125.14	145.72	20.58	
Nó 205	0.03	121.82	143.56	21.74	
Nó 206	0.18	120.15	142.86	22.71	
Nó 207	0.77	118.05	141.93	23.88	
Nó 208	0.15	118.66	141.03	22.37	
Νό 20 9	0.00	118.32	140.90		
Nó 210	0.00	119.18	140.71		
Nó 211	0.00	124.81	139.74	14.93	
Nó 212	0.00	127.87	139.00	11.13	
Nó 213	0.00	126.94	138.65	11.71	
Nó 214	0.00	125.14	137.90	 	
Nó 215	25.94	124.44	137.85	13.41	
RNF 191	-50.17	152.20	152.20	0.00	RAP_1100_m³

M

ZONA DE PRESSÃO 02 (ZP-02)

	PLANILHA DE RÉSULTADOS - TRECHOS								
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/K <u>m)</u>		
1	1	2	158.11	50	0.63	0.32	3.32		
2	2	3	82.49	50	0.10	0.05	0.08		
3	3	4	153.55	75	-1.90	0.43	3.34		
4	5	6	166.78	50	0.35	0.18	1.14		
5	6	7	46.46	50	0.19	0.10	0.40		
6	7	8	65.81	50	0.11	0.06	0.11		
7	8	9	47.88	50	-0.22	0.11	0.51		
8	9	6	65.38	50	-0.03	0.01	0.02		
9	9	10	163.38	50	-0.49	0.25	2.06		
10	10	5	70.80	50	0.49	0.25	2.06		
11	5	11	82.63	50	0.23	0.12	0.54		
12	11	12	214.02	50	0.28	0.14	0.76		
13	12	7	108.91	50	0.03	0.01	0.02		
14	10	13	12.18	50	-0.54	0.28	2.52		
15	14	15	47.57	50	0.66	0.34	3.58		
16	15	13	50.64	50	0.02	0.01	0.02		
17	2	16	51.56	50	0.39	0.20	1.40		
18	16	17	96.91	50	0.27	0.14	0.70		
19	17	18	144.50	50	0.12	0.06	0.12		
20	18	19	90.27	50	0.01	0.00	0.01		
21	19	20	161.38	50	-0.11	0.06	0.11		
22	20	17	76.84	50	0.00	0.00	0.00		
23	20	21	90.61	50	-0.27	0.14	0.74		
24	21	16	79.76	50	-0.02	0.01	0.01		
25	21	3	53.15	50	-0.37	0.19	1.24		
26	22	23	47.01	50	-0.16	0.08	0.29		
27	23	24	12.93	50	0.25	0.13	0.63		
28	24	9	53.31	50	-0.13	0.07	0.17		
29	23	15	160.37	50	-0.52	0.26	2.31		
30	25	24	50.09	50	-0.32	0.16	0.98		
31	3	26	10.66	75	1.49	0.34	2.14		
32	26	27	77.99	50	0.46	0.23	1.83		
33	28	29	80.60	50	0.16	80.0	0.29		
34	29	26	85.73	50	0.08	0.04	0.05		
35	2 5	30	52.59	50	1.00	0.51	7.74		
36	30	31	77.51	50	0.16	0.08	0.29		
37	31	27	54.21	50	-0.82	0.42	5.28		
38	27	32	30.56	50	-0.44	0.22	1.72		
39	32	28	56.81	50	-0.49	0.25	2.08		
40	28	33 :	69.75	50	-0.75	0.38	4.52		
41	34	35	88.98	50	0.76	0.39	4.59		
42	35	36	82.96	50	0.68	0.34	3.74		

PLANILHA DE RESULTADOS - TRECHOS								
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km)	
43	36	37	99.15	50	0.66	0.33	3.53	
44	37	38	86.85	50	0.57	0.29	2.70	
45	38	39	105.58	50	0.48	0.24	1.97	
46	39	40	136.16	50	0.31	0.16	0.92	
47	40	41	144.88	50	0.15	0.08	0.25	
48	41	42	45.73	50	0.06	0.03	0.04	
49	42	43	62.22	50	0.03	0.02	0.02	
50	42	44	62.29	50	0.03	0.02	0.02	
51	44	45	138.50	50	-0.07	0.03	0.05	
52	40	46	47.36	50	0.00	0.00	0.00	
53	46	47	135.46	50	-0.31	0.16	0.92	
54	47	39	51.38	50	-0.02	0.01	0.02	
55	47	48	69.37	50	0.08	0.04	0.05	
56	48	45	144.28	50	0.34	0.17	1.07	
57	42	46	145.86	50	-0.15	0.08	0.26	
<u>58</u>	47	49	103.24	50	-0.53	0.27	2.42	
59	50	48	101.11	50	0.53	0.27	2.41	
60	50	51	91.50	50	-0.52	0.26	2.32	
61	51	52	41.32	50	0.40	0.21	1.46	
62	52	53	71.07	50	0.35	0.18	1.15	
63	53	54	74.98	50	0.28	0.14	0.79	
64	49	54	27.86	50	-0.07	0.04	0.05	
- 65	54	50	65.78	50	0.13	0.07	0.17	
66	49	55	88.93	50	-0.57	0.29	2.75	
67	55	56	86.55	50	-0.65	0.33	3.49	
68	56	36	57.71	50	0.09	0.05	0.06	
69	56	57	87.24	50	-0.72	0.37	4.24	
- <u></u> -	57	31	67.82	50	-0.13	0.07	0.18	
71	31	58	90.76	50	0.70	0.36	4.03	
72	58	56	57.72	50	0.16	0.08	0.28	
73	58	59	38.44	50	0.46	0.23	1.85	
74	59	60	15.55	50	0.43	0.22	1.64	
75	60	61	21.16	50	0.41	0.21	1.50	
	61	62	42.76	50	0,38	0.19	1.31	
76 77	62	51	23.26	50	0.99	0.51	7.58	
	62	63	43.21	50	-0.66	0.34	3.61	
/0 	63	30	95.88	50	-0.73	0.37	4.34	
80	57	64	85.76	50	-0.71	0.36	4.11	
81	64	32	70.97	50	0.03	0.02	0.02	
82	33	64	57.25	50	0.99	0.50	7.55	
83	48	65	22.76	50	0.11	0.06	0.10	
84	65	66	43.14	50	0.02	0.01	0.01	
85	65	67	67.43	50	0.03	0.02	0.02	

Ŋ

<u> </u>	·	PLANI	LHA DE RESUL	TADOS - TREC	HOS		
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km)
86	12	68	99.58	50	0.05	0.03	0.03
87	45	69	59.53	50	0.11	0.06	0.10
88	69	70	84.81	50	0.04	0.02	0.03
89	71	72	92.84	50	0.66	0.33	3.55
90	72	73	13.70	50	0.51	0.26	2.24
91	73	74	26.34	50	-0.14	0.07	0.21
92	74	75	72.94	50	0.73	0.37	4.32
93	75	76	77.18	50	0.32	0.16	0.97
94	76	11	97.89	50	0.24	0.12	0.58
95	75	5	104.42	50	0.29	0.15	0.83
96	73	10	86.26	50	0.59	0.30	2.91
97	72	13	85.67	50	0.59	0.30	2.93
98	77	1	91.99	50	0.82	0.42	5.31
99	4	78	99.15	50	-0.65	0.33	3.46
100	72	79	27.74	50	-0.56	0.28	2.61
101	79	80	173.21	50	-0.89	0.45	6.16
102	80	81	57.92	50	-0.56	0.28	2.62
103	81	82	37.04	50	0.02	0.01	0.02
104	82	83	127.39	50	0.18	0.09	0.35
105	83	84	39.47	50	0.30	0.15	0.87
106	84	80	168.14	50	0.20	0.10	0.43
107	80	85	94.58	50	-0.37	0.19	1.25
108	86	79	93.01	50	0.74	0.38	4.40
109	79	74	14.81	50	0.92	0.47	6.60
110	87	81	90.38	50	0.67	0.34	3.67
111	82	88	91.04	50	-0.28	0.14	0.75
112	88	89	45.74	50	-0.56	0.28	2.64
113	89	90	74.59	50	0.08	0.04	0.06
114	90	91	43.72	50	0.54	0.27	2.45
115	91	88	74.84	50	0.12	0.06	0.13
116	88	92	121.80	50	0.24	0.12	0.60
117	92	93	73.50	50	-0.12	0.06	0.13
118	93	94	81.95	50	-0.19	0.09	0.37
119	94	95	113.19	50	0.05	0.03	0.03
120	95	96	78.12	50	0.16	0.08	0.28
121	96	93	117.10	50	0.07	0.03	0.04
122	91	94	37.15	50	0.35	0.18	1.12
123	83	92	71.35	50	-0.23	0.12	0.56
124	97	89	84.97	50	0.74	0.38	4.45
125	95	98	76.52	50	-0.23	0.12	0.56
126	90	98	110.68	50	0.32	0.16	0.99
127	99	100	90.89	50	-0.51	0.26	2.25
128	101	99	70.59	50	-0.42	0.21	1.55

刎

		PLAN	ILHA DE RESUL	TADOS - TREC	HOS		
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km)
131	104	105	94.39	50	-0.85	0.43	5.69
132	105	100	52.46	50	0.95	0.48	6.99
133	100	103	54.18	50	0.35	0.18	1.13
134	103	106	74.83	50	0.26	0.13	0.67
135	106	97	12.94	100	-2.12	0.27	0.99
136	106	107	111.50	50	0.51	0.26	2.25
137	107	87	12.44	100	-3.37	0.43	2.32
138	107	108	72.39	75	2.26	0.51	4.60
139	108	85	13.01	75	0.44	0.10	0.24
140	108	109	106.75	50	0.96	0.49	7.14
141	109	110	35.46	75	0.89	0.20	0.84
142	110	86	12.02	75	-0.99	0.22	1.01
143	110	77	33.15	75	1.40	0.32	1.92
144	101	111	61.62	50	0.29	0.15	0.80
145	111	112	124.46	50	0.41	0.21	1.49
146	112	113	84.32	50	0.89	0.45	6.20
147	113	114	116.90	50	0.75	0.38	4.53
148	114	78	33.65	50	0.65	0.33	3.45
149	114	110	80.92	50	-0.39	0.20	1.41
150	113	108	91.53	50	-0.71	0.36	4.11
151	112	107	87.35	75	-1.49	0.34	2.14
152	111	106	89.70	75	-1.73	0.39	2.81
153	115	116	61.42	50	0.12	0.06	0.12
154	115	117	73.31	50	-0.33	0.17	1.00
155	118	117	7.94	50	0.41	0.21	1.51
156	119	120	120.77	50	0.22	0.11	0.51
157	121	122	84.75	50	0.62	0.31	3.15
158	123	122	39.94	50	-0.57	0.29	2.72
159	122	124	74.43	50	0.25	0.13	0.61
160	124	125	43.58	50	0.52	0.27	2.35
161	125	123	72.85	50	-0.23	0.12	0.54
162	123	126	105.89	50	0.52	0.27	2.33
163	113	121	104.26	50	0.66	0.34	3.59
164	121	127	74.37	50	0.51	0.26	2.26
165	į	124	62.00	50	0.52	0.27	2.32
166	127 128	125	110.22	50	-0.47	0.24	1.95
167		129	71.44	50	0.14	0.07	0.21
	125		115.10	50	0.55	0.28	2.53
168 160	129	130	72.31	50	-0.37	0.19	1.26
<u>169</u>	130	128	68.78	50	0.12	0.06	0.14
170	124	131	47.11	50	0.52	0.26	2.29
171	131		41.61	50	-0.47	0.24	1.96
172 172	131	132			 -	£	
173	132	127	71.08	50	-0.33	0.17	1.01

M

-		PLANI	LHA DE RESUL	TADOS - TREC	HOS		
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km)
174	127	133	103.33	50	-0.48	0.25	2.04
175	133	134	68.80	50	0.62	0.31	3.15
176	134	132	111.40	50	0.24	0.12	0.59
17 7	132	135	39.05	50	-0.04	0.02	0.02
178	135	136	119.08	50	-0.12	0.06	0.12
179	136	134	78.52	50	-0.26	0.13	0.65
180	133	137	74.62	50	-0.67	0.34	3.67
181	137	121	94.44	50	0.64	0.32	3.35
182	133	138	153.76	50	-0.62	0.32	3.20
183	138	139	47.57	50	-0.08	0.04	0.05
184	139	140	164.01	50	-0.26	0.13	0.65
185	140	141	53.18	50	0.01	0.01	0.01
186	141	138	167.23	50	0.25	0.13	0.65
187	138	142	76.21	50	-0.50	0.26	2.16
188	142	143	169.02	50	-0.16	0.08	0.28
189	143	141	77.91	50	0.38	0.19	1.32
190	139	144	90.57	50	0.04	0.02	0.03
191	136	145	44,21	50	0.02	0.01	0.01
192	120	146	94.53	50	0.64	0.32	3.36
193	147	148	79.52	50	0.61	0.31	3.11
194	148	149	57.53	50	0.57	0.29	2.75
195	149	150	89.91	50	0.14	0.07	0.22
196	150	151	83.76	50	-0.01	0.01	0.01
197	151	152	117.28	50	-0.14	0.07	0.19
198	152	149	79.41	50	0.07	0.03	0.05
199	152	153	36.31	50	-0.31	0.16	0.94
200	153	154	59.64	50	-0.50	0.25	2.12
201	154	148	115.99	50	0.08	0.04	0.05
202	147	155	117.96	50	-0.12	0.06	0.14
203	155	154	81.25	50	0.62	0.31	3.17
204	155	156	104.67	50	-0.56	0.28	2.61
206	157	119	107.21	50	-0.47	0.24	1.92
		158	14.44	50	0.93	0.47	6.70
207	146 158	147	102.32	50	0.53	0.32	3.28
	i		118.52	50	0.19	0.10	0.39
209	158 159	156 160	64.52	50	0.46	0.23	1.86
210			60.20	50	0.40	0.10	0.40
211	160	161	57.46	50	0.01	0.00	0.01
212	161	162		50	-0.05	0.03	0.03
213	162	163	72.28	50	-0.11	0.05	0.10
214	163	164	<u> 53.19</u>	50	0.11	0.06	0.10
215	164	161	72.82 121.43			0.07	0.10
216	161	165	131.42	50	0.15		
217	165	153	61.87	50	-0.19	0.10	0.38

Ŋ

		PLAN	ILHA DE RESUL	TADOS - TREC	HOS		
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km)
218	153	160	130.88	50	-0.15	0.07	0.24
219	154	159	124.34	50	-0.14	0.07	0.20
220	159	166	86.18	50	0.02	0.01	0.01
221	165	167	67.92	50	0.21	0.11	0.48
222	167	151	40.02	50	0.00	0.00	0.00
223	146	157	118.59	50	-0.40	0.20	1.45
224	168	169	71.27	50	-0.03	0.02	0.02
225	169	170	45.64	50	-0.09	0.05	0.06
226	170	167	6.98	50	-0.17	0.09	0.31
227	170	171	122.47	50	0.00	0.00	0.01
228	171	150	9.79	50	-0.06	0.03	0.05
229	166	164	125.05	50	0.34	0.17	1.09
230	159	172	79.28	50	-0.79	0.40	4.92
231	166	173	80.51	50	-0.46	0.24	1.88
232	173	172	95.59	50	-0.54	0.28	2.51
233	155	172	117.12	50	-0.39	0.20	1.35
234	172	174	109.76	75	-1.90	0.43	3.37
235	174	156	107.85	50	0.53	0.27	2.36
236	174	175	11.77	75	-2.54	0.57	5.75
237	175	176	113.82	75	-2.74	0.62	6.64
238	177	176	14.32	100	3.70	0.47	2.76
239	177	178	84.67	50	0.77	0.39	4.72
240	178	118	92.80	50	0.31	0.16	0.92
241	118	179	84.54	50	-0.52	0.27	2.34
242	176	119	97.72	50	0.85	0.43	5.69
243	157	175	107.26	50	-0.09	0.05	0.07
244	116	180	103.58	50	0.04	0.02	0.02
245	180	181	75.70	50	-0.05	0.03	0.04
246	181	115	107.37	50	-0.09	0.05	0.06
247	181	182	74.78	50	-0.08	0.04	0.06
248	182	183	7.37	50	0.09	0.04	0.06
249	183	184	84.08	50	0.27	0.14	0.72
250	184	120	17.87	100	2.40	0.31	1.24
251	118	183	112.96	50	0.28	0.14	0.78
252	182	117	112.39	50	-0.26	0.13	0.68
<u>252</u> 253	117	185	92.80	50	-0.32	0.16	0.96
254	185	178	7.06	50	-0.37	0.19	1.24
255	140	149	14.73	50	-0.38	0.19	1.31
256	142	186	64.65	50	-0.74	0.38	4.40
257	186	187	44.27	50	0.64	0.32	3.35
258	187	188	38.21	50	0.02	0.01	0.01
259 259	187	189	63.28	50	0.55	0.28	2.54
260	189	137	96.89	50	0.67	0.34	3,70

	······································	PLA	VILHA DE RESULTA	ADOS - TREC	HOS		
TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km)
261	189	142	46.27	50	-0.23	0.11	0.52
262	33	128	56.41	75	-1.83	0.41	3.13
263	34	130	108.75	50	-0.78	0.40	4.83
264	64	34	73.40	50	0.11	0.06	0.10
265	122	114	103.43	50	-0.34	0.17	1.07
266	123	78	99.81	50	-0.33	0.17	1.04
267	78	77	81.94	50	-0.48	0.25	2.03
268	186	111	48.02	75	-1.46	0.33	2.05
269	137	112	110.26	50	-0.82	0.42	5.26
270	104	190	6.69	50	0.80	0.41	5.09
271	190	99	40.42	50	0.00	0.00	0.00
272	143	190	119.13	50	-0.72	0.37	4.16
273	120	105	6.51	100	1.87	0.24	0.79
274	191	192	49.78	350	50.17	0.52	0.71
275	192	193	159.04	250	50.17	1.02	3.83
276	193	194	16.40	250	49.96	1.02	3.80
277	194	195	105.57	250	49.90	1.02	3.79
278	195	196	158.06	250	49.77	1.01	3.77
279	196	197	98.11	250	49.65	1.01	3.75
280	197	198	42.74	250	49.58	1.01	3.74
281	198	199	193.68	250	49.47	1.01	3.73
282	199	200	84.63	250	49.34	1.01	3.71
283	200	201	235.41	250	49.19	1.00	3.69
284	201	202	76.63	250	49.04	1.00	3.66
285	202	177	319.63	250	48.85	1.00	3.64
286	177	179	96.10	250	44.13	0.90	3.00
287	179	184	119.11	250	43.47	0.89	2.91
288	184	203	9.41	250	41.23	0.84	2.63
289	203	204	107.06	250	41.17	0.84	2.63
290	204	97	74.60	250	40.11	0.82	2.50
291	97	87 _	108.95	250	37.12	0.76	2.16
292	87	85	69.13	200	32.95	1.05	5.29
293	85	86	147.66	200	32.86	1.05	5.26
294	86	71	32.29	200	30.99	0.99	4.70
295	71	14	91.32	200	30.24	0.96	4.49
296	14	1	11.66	150	2.92	0.17	0.24
297	1	4	81.29	150	2.95	0.17	0.25
298	4	126	96.29	150	1.49	0.08	0.07
299	126	205	38.76	150	1.89	0.11	0.11
300	205	128	33.47	150	1.86	0.11	0.11
301	90	204	85.54	50	-0.93	0.47	6.65
302	8	25	51.57	50	0.26	0.13	0.65
303	25	206	61.36	50	0.50	0.25	2.14

TRECHO	Nó inicio	Nó final	L (m)	D (mm)	Q (L/s)	V (m/s)	P.C. (m/Km
304	14	22	158.60	200	26.50	0.84	3.49
305	22	206	49.91	200	26.54	0.84	3.50
306	206	207	260.97	200	26.86	0.85	3.58
307	207	208	264.26 200 26.09	0.83	3.39		
308	208	209	39.16	200	25.94	0.83	3.35
309	209	210	57.07	200	25.94	0.83	3.35
310	210	211	287.81	200 25.94 0.8	0.83	3.35	
311	211	212	220.55	200	25.94	0.83	3.35
312	212	213	106.21	200	25.94	0.83	3.35
313	213	214	223.67	200	25.94	0.83	3.35
314	214	215	13.88	200	25.94	0.83	3.35
					- -		<u>.</u>

ZO	NA DE PRES	SÃO (ZP-02)	
PLANILH	A DE RESUL	TADOS - ESTA	TICA
Identificador do Nó	Cota (m)	Carga Hidráulica (m)	Pressão (m)
Nó 1	120.06	155.3	35.24
Nó 2	120.04	155.3	35.26
Nó 3	121.6	155.3	33.7
Nó 4	122.1	155.3	33.2
Nó 5	119.34	155.3	35.96
Nó 6	118.71	155.3	36.59
Nó 7	118.4	155.3	36.9
Nó 8	120.41	155.3	34.89
Nó 9	119.54	155.3	35.76
Nó 10	119.25	155.3	36.05
Nó 11	119.1	155.3	36.2
Nó 12	118.15	155.3	37.15
Nó 13	119.21	155.3	36.09
Nó 14	120.09	155.3	35.21
Nó 15	119.86	155.3	35.44
Nó 16	120.1	155.3	35.2
Nó 17	120.13	155.3	35.17
Nó 18	117.1	155.3	38.2
Nó 19	119.06	155.3	36.24
Nó 20	121.1	155.3	34.2
Nó 21	121.85	155.3	33.45
Nó 22	120.05	155.3	35.25
Nó 23	119.89	155.3	35.41
Nó 24	119.84	155.3	35.46
Nó 25	120.25	155.3	35.05
Nó 26	121.63	155.3	33.67
Nó 27	120.03	155.3	35.27
Nó 28	122.21	155.3	33.09
Nó 29	122.67	155.3	32.63
Nó 30	121.76	155.3	33.54
Nó 31	119.59	155.3	35.71
Nó 32	120.84	155.3	34.46
Nó 33	121.15	155.3	34.15
Nó 34	116.81	155.3	38.49
Nó 35	116.44	155.3	38.86
Nó 36	116.61	155.3	38.69
Nó 37	116.87	155.3	38.43
Nó 38	116.84	155.3	38.46
Nó 39	116.65	155.3	38.65

Nó 40 116.56 155.3 38.74 Nó 41 116.38 155.3 38.92 Nó 42 117.16 155.3 38.14 Nó 43 116.31 155.3 38.99 Nó 44 116.73 155.3 38.57 Nó 45 118.11 155.3 37.19 Nó 46 117.44 155.3 37.86 Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.24 Nó 50 119.1 155.3 36.24 Nó 50 119.1 155.3 36.24 Nó 50 119.1 155.3 36.22 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.27 155.3 36.05 Nó 55 121.27 155.3 36.63 Nó 57 117.71 155.3 34.68 Nó 59				
Nó 42 117.16 155.3 38.14 Nó 43 116.31 155.3 38.99 Nó 44 116.73 155.3 38.57 Nó 45 118.11 155.3 37.19 Nó 46 117.44 155.3 37.86 Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.24 Nó 50 119.1 155.3 36.24 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 36.63 Nó 56 118.67 155.3 37.59 Nó 58 120.62 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.5 155.3 33.42 Nó 62 <td>Nó 40</td> <td>116.56</td> <td>155.3</td> <td>38.74</td>	Nó 40	116.56	155.3	38.74
Nó 44 116.31 155.3 38.99 Nó 44 116.73 155.3 38.57 Nó 45 118.11 155.3 37.19 Nó 46 117.44 155.3 37.86 Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.44 Nó 50 119.1 155.3 36.24 Nó 50 119.1 155.3 36.24 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 34.03 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 34.03 Nó 57 117.71 155.3 34.68 Nó 58 120.62 155.3 33.72 Nó 60 121.84 155.3 33.42 Nó 61 <td>Nó 41</td> <td>116.38</td> <td>155.3</td> <td>38.92</td>	Nó 41	116.38	155.3	38.92
Nó 44 116.73 155.3 38.57 Nó 45 118.11 155.3 37.19 Nó 46 117.44 155.3 37.86 Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 36.44 Nó 50 119.1 155.3 36.24 Nó 50 119.1 155.3 36.24 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.52 Nó 53 121.27 155.3 33.79 Nó 54 119.25 155.3 34.03 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 34.63 Nó 57 117.71 155.3 34.58 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.42 Nó 61 121.1 155.3 34.2 Nó 62	Nó 42	117.16	155.3	38,14
Nó 45 118.11 155.3 37.19 Nó 46 117.44 155.3 37.86 Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.44 Nó 50 119.1 155.3 36.24 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 33.72 Nó 60 121.84 155.3 33.72 Nó 61 121.1 155.3 33.8 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 37.24 Nó 65	Nó 43	116.31	155.3	38.99
Nó 46 117.44 155.3 37.86 Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.44 Nó 50 119.1 155.3 36.2 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 36.05 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 36.63 Nó 56 118.67 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 34.2 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65	Nó 44	116.73	155.3	38.57
Nó 47 117.06 155.3 38.24 Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.44 Nó 50 119.1 155.3 36.2 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 36.05 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 36.63 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 33.46 Nó 59 121.58 155.3 33.46 Nó 60 121.84 155.3 33.42 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65	Nó 45	118.11	155.3	37.19
Nó 48 117.93 155.3 37.37 Nó 49 118.86 155.3 36.44 Nó 50 119.1 155.3 36.2 Nó 51 120.85 155.3 34.45 Nó 52 121.78 195.3 33.52 Nó 53 121.51 195.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 33.46 Nó 59 121.58 155.3 33.46 Nó 60 121.84 155.3 33.42 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 37.04 Nó 68	Nó 46	117.44	155.3	37.86
Nó 49 118.86 155.3 36.44 Nó 50 119.1 155.3 36.2 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 36.68 Nó 65 118.62 155.3 37.04 Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 69 118.97 155.	Nó 47	117.06	155.3	38.24
Nó 50 119.1 155.3 36.2 Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 36.05 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.46 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 37.04 Nó 66 118.08 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 70 118.89 155.3 36.31 Nó 71 122.05 155.	Nó 48	117.93	155.3	37.37
Nó 51 120.85 155.3 34.45 Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 72 119.62 15	Nó 49	118.86	155.3	36.44
Nó 52 121.78 155.3 33.52 Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71	Nó 50	119.1	155.3	36.2
Nó 53 121.51 155.3 33.79 Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 67 118.26 155.3 36.33 Nó 70 118.89 155.3 36.31 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 75 119 155.3	Nó 51	120.85	155.3	34.45
Nó 54 119.25 155.3 36.05 Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 65 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 75 119 155.3	Nó 52	121.78	155.3	33.52
Nó 55 121.27 155.3 34.03 Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 75 119 155.3 35.36 Nó 76 119.94 155.3 36.3 Nó 77 121.89 155.3<	Nó 53	121.51	155.3	33.79
Nó 56 118.67 155.3 36.63 Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 75 119 155.3 35.36 Nó 76 119.94 155.3 35.36 Nó 79 119.74 155.3	Nó 54	119.25	155.3	36.05
Nó 57 117.71 155.3 37.59 Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 67 118.26 155.3 37.04 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.31 Nó 71 122.05 155.3 36.41 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 75 119 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78	Nó 55	121.27	155.3	34.03
Nó 58 120.62 155.3 34.68 Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.31 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.59 Nó 74 119.7 155.3 35.36 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 <td>Nó 56</td> <td>118.67</td> <td>155.3</td> <td>36.63</td>	Nó 56	118.67	155.3	36.63
Nó 59 121.58 155.3 33.72 Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.6 Nó 75 119 155.3 35.36 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78	Nó 57	117.71	155.3	37.59
Nó 60 121.84 155.3 33.46 Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.59 Nó 74 119.7 155.3 35.36 Nó 75 119 155.3 35.36 Nó 76 119.94 155.3 33.41 Nó 78 123.64 155.3 35.56 Nó 79 119.74 155.3 35.56 Nó 80	Nó 58	120.62	155.3	34.68
Nó 61 121.1 155.3 34.2 Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.36 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 80 119.7 155.3 36.2 Nó 80 <	Nó 59	121.58	155.3	33.72
Nó 62 121.5 155.3 33.8 Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.04 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.69 Nó 74 119.7 155.3 35.36 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81	Nó 60	121.84	155.3	33.46
Nó 63 121.1 155.3 34.2 Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.31 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 35.68 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 35.56 Nó 80 119.7 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 82	Nó 61	121.1	155.3	34.2
Nó 64 119.42 155.3 35.88 Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 62	121.5	155.3	33.8
Nó 65 118.62 155.3 36.68 Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 36.2 Nó 80 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 63	121.1	155.3	34.2
Nó 66 118.08 155.3 37.22 Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 36.2 Nó 80 119.1 155.3 36.2 Nó 81 119.96 155.3 35.34	Nó 64	119.42	155.3	35.88
Nó 67 118.26 155.3 37.04 Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 36.2 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 35.34	Nó 65	118.62	155.3	36.68
Nó 68 120.17 155.3 35.13 Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 31.66 Nó 78 123.64 155.3 31.66 Nó 79 119.1 155.3 36.2 Nó 80 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 66	118.08	155.3	37.22
Nó 69 118.97 155.3 36.33 Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 35.34	Nó 67	118.26	155.3	37.04
Nó 70 118.89 155.3 36.41 Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 36.2 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 35.34	Nó 68	120.17	155.3	35.13
Nó 71 122.05 155.3 33.25 Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 69	118.97	155.3	36.33
Nó 72 119.62 155.3 35.68 Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 70	118.89	155.3	36.41
Nó 73 119.71 155.3 35.59 Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 36.2 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 35.34	Nó 71	122.05	155.3	33.25
Nó 74 119.7 155.3 35.6 Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 72	119.62	155.3	35.68
Nó 75 119 155.3 36.3 Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 73	119.71	155.3	35.59
Nó 76 119.94 155.3 35.36 Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 74	119.7	155.3	35.6
Nó 77 121.89 155.3 33.41 Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 75	119	155.3	36.3
Nó 78 123.64 155.3 31.66 Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 7 6	119.94	155.3	35.36
Nó 79 119.74 155.3 35.56 Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 77	121.89	155.3	33,41
Nó 80 119.1 155.3 36.2 Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 78	123.64	155.3	31.66
Nó 81 119.1 155.3 36.2 Nó 82 119.96 155.3 35.34	Nó 79	119.74	155.3	35.56
Nó 82 119.96 155.3 35.34	Nó 80	119.1	155.3	36.2
	Nó <u>81</u>	119.1	155.3	36.2
Nó 83 119.1 155.3 36.2	Nó 82	119.96	155.3	
	Nó 83	119.1	155.3	_36.2

M

Nó 84 119.1 155.3 36.2 Nó 85 121.07 155.3 34.23 Nó 86 122.28 155.3 33.02 Nó 87 121.57 155.3 33.73 Nó 88 121.72 155.3 33.58 Nó 89 122.02 155.3 32.3 Nó 90 123 155.3 32.3 Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 34.68 Nó 93 120.62 155.3 34.54 Nó 93 120.62 155.3 34.54 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.58 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 103				
Nó 86 122.28 155.3 33.02 Nó 87 121.57 155.3 33.73 Nó 88 121.72 155.3 33.58 Nó 90 123 155.3 32.3 Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 34.68 Nó 93 120.62 155.3 34.54 Nó 94 120.76 155.3 33.58 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 32.49 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.49 Nó 103 125.86 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 30.19 Nó 106<	Nó 84	119.1	155.3	36.2
Nó 87 121.57 155.3 33.73 Nó 88 121.72 155.3 33.58 Nó 90 123 155.3 32.3 Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 33.21 Nó 93 120.62 155.3 34.68 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 103 125.86 155.3 29.43 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.94 Nó 106 124.19 155.3 31.11 Nó 107	Nó 85	121.07	155.3	34.23
Nó 88 121.72 155.3 33.58 Nó 89 122.02 155.3 33.28 Nó 90 123 155.3 32.3 Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 34.68 Nó 93 120.62 155.3 34.54 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 100 125.82 155.3 29.43 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.94 Nó 103 125.86 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 30.19 Nó 106 124.19 155.3 31.11 Nó 10	Nó 86	122.28	155.3	33.02
Nó 89 122.02 155.3 33.28 Nó 90 123 155.3 32.3 Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 34.68 Nó 93 120.62 155.3 34.68 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 32.49 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 102 125.87 155.3 29.94 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 1	Nó 87	121.57	155.3	33.73
Nó 90 123 155.3 32.3 Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 35.31 Nó 93 120.62 155.3 34.68 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 103 125.36 155.3 29.43 Nó 104 125.11 155.3 29.94 Nó 105 126.91 155.3 29.94 Nó 106 124.19 155.3 30.19 Nó 107 121.74 155.3 31.11 Nó 108 121.29 155.3 32.67 Nó 109 122.63 155.3 32.76 Nó	Nó 88	121.72	155.3	33.58
Nó 91 122.09 155.3 33.21 Nó 92 119.99 155.3 35.31 Nó 93 120.62 155.3 34.68 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 32.49 Nó 98 122.81 155.3 29.48 Nó 100 125.87 155.3 29.48 Nó 101 126.91 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 29.94 Nó 105 126.2 155.3 29.94 Nó 106 124.19 155.3 30.19 Nó 107 121.74 155.3 31.11 Nó 108 121.29 155.3 32.76 Nó 109 122.63 155.3 32.77 <t< td=""><td>Nó 89</td><td>122.02</td><td>155.3</td><td>33.28</td></t<>	Nó 89	122.02	155.3	33.28
Nó 92 119.99 155.3 35.31 Nó 93 120.62 155.3 34.68 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 103 125.36 155.3 29.43 Nó 104 125.11 155.3 29.94 Nó 105 126.2 155.3 29.94 Nó 106 124.19 155.3 30.19 Nó 107 121.74 155.3 31.11 Nó 108 121.29 155.3 32.67 Nó 109 122.63 155.3 32.76 <t< td=""><td>Nó 90</td><td>123</td><td>155.3</td><td>32.3</td></t<>	Nó 90	123	155.3	32.3
Nó 93 120.62 155.3 34.68 Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.48 Nó 101 126.91 155.3 29.43 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 29.94 Nó 105 126.2 155.3 29.94 Nó 106 124.19 155.3 30.19 Nó 107 121.74 155.3 31.56 Nó 108 121.29 155.3 32.67 Nó 110 122.54 155.3 32.76 <	Nó 91	122.09	1 55.3	33.21
Nó 94 120.76 155.3 34.54 Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 101 126.91 155.3 29.43 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.94 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 31.11 Nó 108 121.29 155.3 32.67 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 32.77	Nó 92	119.99	155.3	35.31
Nó 95 121.72 155.3 33.58 Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 28.39 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 32.76 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.43 <	Nó 93	120.62	155.3	34.68
Nó 96 121.79 155.3 33.51 Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 29.94 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 32.67 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 32.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.43 Nó 114 124.04 155.3 32.43	Nó 94	120.76	155.3	34.54
Nó 97 123.92 155.3 31.38 Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 28.39 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 32.67 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 32.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 <	Nó 95	121.72	155.3	33.58
Nó 98 122.81 155.3 32.49 Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 28.39 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 32.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 120 126	Nó 96	121.79	155.3	33.51
Nó 99 125.82 155.3 29.48 Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 28.39 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 32.76 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 120 126.53 155.3 31.61	Nó 97	123.92	155.3	31.38
Nó 100 125.87 155.3 29.43 Nó 101 126.91 155.3 28.39 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 100 122.54 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 31.71 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 Nó 115 122.96 155.3 32.43 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61	Nó 98	122.81	155.3	32.49
Nó 101 126.91 155.3 28.39 Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.76 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.48 Nó 119 126.53 155.3 31.48 Nó 120 126.16 155.3 29.14	Nó 99	125.82	1 55.3	29.48
Nó 103 125.36 155.3 29.94 Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 31.26 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.43 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.48	Nó 100	125.87	155.3	29.43
Nó 104 125.11 155.3 30.19 Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 Nó 115 122.96 155.3 32.43 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 120 126.53 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 31.92	Nó 101	126.91	155.3	28.39
Nó 105 126.2 155.3 29.1 Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 32.34 Nó 115 122.96 155.3 32.43 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48	Nó 103	125.36	155.3	29.94
Nó 106 124.19 155.3 31.11 Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 34.68 Nó 123 120.62 155.3 36.4	Nó 104	125.11	155.3	30.19
Nó 107 121.74 155.3 33.56 Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32.34 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 34.68 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49	Nó 105	126.2	155.3	29.1
Nó 108 121.29 155.3 34.01 Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49 Nó 125 117.81 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 106	124.19	155.3	31.11
Nó 109 122.63 155.3 32.67 Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 107	121.74	155.3	33.56
Nó 110 122.54 155.3 32.76 Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49 Nó 125 117.81 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 108	121.29	155.3	34.01
Nó 111 126.53 155.3 28.77 Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 34.97	Nó 109	122.63	155.3	32.67
Nó 112 123.59 155.3 31.71 Nó 113 123.3 155.3 32 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49 Nó 125 117.81 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 1 10	122.54	155.3	32.76
Nó 113 123.3 155.3 32 Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49 Nó 125 117.81 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 111	126.53	155.3	28.77
Nó 114 124.04 155.3 31.26 Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 37.49 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 112	123.59	155.3	31.71
Nó 115 122.96 155.3 32.34 Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 113	123.3	155.3	32
Nó 116 122.87 155.3 32.43 Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 114	124.04	155.3	31.26
Nó 117 123.69 155.3 31.61 Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 115	122.96	155.3	32.34
Nó 118 123.82 155.3 31.48 Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 116	122.87	155.3	32.43
Nó 119 126.53 155.3 28.77 Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 117	123.69	155.3	31.61
Nó 120 126.16 155.3 29.14 Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 118	123.82	155.3	31.48
Nó 121 123.38 155.3 31.92 Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 119	126.53	155.3	28.77
Nó 122 121.82 155.3 33.48 Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 120	126.16	155.3	29.14
Nó 123 120.62 155.3 34.68 Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 121	123.38	155.3	31.92
Nó 124 118.9 155.3 36.4 Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 122	121.82	155.3	33.48
Nó 125 117.81 155.3 37.49 Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 123	120.62	155.3	34.68
Nó 126 122.86 155.3 32.44 Nó 127 120.33 155.3 34.97	Nó 124	118.9	155.3	36.4
Nó 127 120.33 155.3 34.97	Nó 125	117.81	155.3	37.49
	Nó 126	122.86	155.3	32.44
Nó 128 121.02 155.3 34.28	Nó 127	120.33	155.3	
	Nó 128	121.02	155.3	34.28

Nó 1 <u>29</u>	116.63	155.3	38.67
Nó 130	117.29	155.3	38.01
Nó 131	117.04	155.3	38.26
Nó 132	117.43	155.3	_37.87
Nó 133	121.82	155.3	33.48
Nó 134	120.02	155.3	35.28
Nó 135	116.57	155.3	38.73
Nó 136	117.02	155.3	38.28
Nó 137	125.45	155.3	29.85
Nó 138	119.76	155.3	35.54
Nó 139	118.67	155.3	36.63
Nó 140	117.1	155.3	38.2
Nó 141	118.29	155.3	37.01
Nó 142	123.57	155.3	31.73
Nó 143	120.27	155.3	35.03
Nó 144	118	155.3	37.3
Nó 145	117.1	155.3	38.2
Nó 146	125.11	155.3	30.19
Nó 147	120.2	155.3	35.1
Nó 148	118.15	155.3	37.15
Nó 149	117.1	155.3	38.2
Nó 150	118.14	155.3	37.16
Nó 151	121.07	155.3	34.23
Nó 152	121.64	155.3	33.66
Nó 153	123.57	155.3	31.73
Nó 154	123.04	155.3	32.26
Nó 155	121.16	155.3	34.14
Nó 156	126.19	155.3	29.11
Nó 157	126.39	155.3	28.91
Nó 158	124.14	155.3	31.16
Nó 159	126.72	_155.3	28.58
Nó 160	125.83	155.3	29.47
Nó 161	124.46	155.3	30.84
Nó 162	121.44	155.3	33.86
Nó 163	119.53	155.3	35.77
Nó 164	120.95	155.3	34.35
Nó 165	123.25	155.3	32.05
Nó 166	122.56	155.3	32.74
Nó 167	121.97	155.3	33,33
Nó 168	119	155.3	36.3
Nó 169	121.18	155.3	34.12
Nó 170	121.58	155.3	33.72
Nó 171	118.59	155.3	36.71
Nó 172	126.81	155.3	28.49

Nó 173	125.83	155.3	29.47
Nó 174	128.43	155.3	26.87
Nó 175	128.8	155.3	26.5
Nó 176	128.02	155.3	27.28
Nó 177	127.85	155.3	27.45
Nó 178	125.28	155.3	30.02
Nó 179	126.42	155.3	28.88
Nó 180	121.93	155.3	33.37
Nó 181	121.79	155.3	33.51
Nó 182	122.82	155.3	32.48
Nó 183	122.92	155.3	32.38
Nó 184	125.86	155.3	29.44
Nó 185	125.27	155.3	30.03
Nó 186	126.83	155.3	28.47
Nó 187	126.59	155.3	28.71
Nó 188	126.07	155.3	29.23
Nó 189	124.02	155.3	31.28
Nó 190	125.13	155.3	30.17
Nó 192	151.5	155.3	3.8
Nó 193	137.62	155.3	17.68
Nó 194	136.96	155.3	18.34
Nó 195	139.22	155.3	16.08
Nó 196	134.57	155.3	20.73
Nó 197	132.44	1 55.3	22.86
Nó 198	131.43	1 55.3	23.87
Nó 199	130.1	155.3	25.2
Nó 200	130.32	155.3	24.98
Nó 201	130.15	155.3	25.15
Nó 202	130.42	155.3	24.88
Nó 203	125.85	155.3	29.45
Nó 204	125.14	155.3	30.16
Nó 205	121.82	155.3	33.48
Nó 206	120.15	155.3	35.15
Nó 207	118.05	155.3	37.25
Nó 208	118.66	155.3	36.64
Nó 209	118.32	155.3	36.98
Nó 210	119.18	155.3	36,12
Nó 211	124.81	155.3	30.49
Nó 212	127.87	155.3	27.43
Nó 213	126.94	155.3	28.36
Nó 214	125.14	155.3	30.16
Nó 215	124.44	155.3	30.86
RNF 191	155.3	155.3	0

M

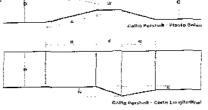
Sistema de Tratamento

Dimensionamento do Sistema de Coagulação e medição água bruta

<u>Calha Parshal</u> (Município de Jaguaribe - Estado do Ceará)

1.0 UNIDADE DE COAGULAÇÃO : MISTURA RAPIDA

1.1. CONSIDERAÇÕES INICIAIS


O sistema preliminar para mistura rapida e medidor de vazão do tipo Parshall. Será aproveitado a calha parshall para favorecer a mistura rápida do coagulante.

1.2. MEDIDOR DE VAZÃO: CALHA PARSHAL

O medidor de vazão utilizado para a ETA será a Calha Parshalt. A partir das vazões máximas e mínimas da ETA, pela Tabela aseg define-se suas dimensões, específicando-o pela targura de sua seção estrangulada (garganta).

As vazões a serem consideradas para o dimensionamento são:

Vazão
Q min 62.44 124
Q med 74.62 Us
Q max 99 Us
Será adotada a Calha Parshall com capacidade de atendimento entre a Qmin (Q Inicio plano) e a Qmax (Q final de plano).

Especificação: 9pol

	N	Δ .	а. в	C	o b	(10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×		G	A PARENT	N.	@ min	Q max
(poi)	(cm)	100	120.	3.70						45	(1/6)	(178)
1 poi	2.5	36.3	35.5	9.3	16.8	22.9	7.6	20.3	1.9	2.9	`	
3 _{EOJ}	7,6	46,6	45.7	17.8	25.9	38.1	15.2	30.5	2.5	5.7	0.85	53.8
Gool	15.2	62.1	61.0	39,4	40.3	45.7	30.5	61.0	7.6	11.4	1.52	110.4
9nol	22.9	88.0	26.4	38.0	57.5	76.3	30.5	45.7	7.6	11.4	2.55	251.9
	30.5	137.2	134.4	51,0	84.5	91.5	61,0	91.5	7,6	22.9	3,11	455.6
1 1/2	45.7	154.9	142.0	76,2	102.6	91.5	61.0	91.5	7.6	22.9	4.25	696.2
2	61.D	152.5	149.6	91.5	120.7	91.5	61.0	91.5	7.6	22.9	11.89	936.7
3	91.5	187.7	164.5	122.0	157.2	91.5	61.0	91.5	7.8	22.9	17.25	1426.3
4	122.0	183.0	178.5	152.5	193.8	91.5	61.0	9 1.5	7.6	22.9	36.79	1921.5
5	152.5	198.3	194.1	183.0	230.3	91.5	61.0	91.5	7.6	22.9	62.80	2422.0
	183.0	213.5	209.0	213.5	266.7	91.5	61.0	91.5	7.6	22.9	74.40	2929.0
7	213.5	Z26.8	224.0	244.0	303.0	91.5	61.0	91.5	7.6	22.9	115.40	3440.0
	244.0	244.0	239.2	274.5	340.0	91.5	61.0	91.5	7.6	22.9	130.70	3950.0
10	305.0	274.5	427.0	365,0	475.9	122.0	91.5	183.0	15.3	34.3	200.00	5860.0

Para retacionar a vazão com a altura de làmina de água, utiliza-se a seguinte equação: — Quando "x" e "n" são em função da calha parshall adotada, conforme se verifica na tabela abaixo: $Q = k \cdot H^n$

W	cm //	n	K
3pol	7.6	1.547	0.176
6pol	15.2	1.580	0.381
9pol	22.9	1.530	0.535
1	30,5	1.522	0.690
1.5	45.7	1,538	1.054
2	61	1.550	1.426
3	91.5	1.566	2.162
4	122	1.578	2.935
5	152.5	1.597	3.728
6	163	1.595	4.515
7	213.5	1.601	5.306
8_	244	1,506	6.101

Para W = 9pol 0.535 1,530

A equação ficará igual a:

Q = 0,535 H f.533

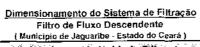
Calha parshall selecionada é de 9"

1.0 UNIDADE DE COAGULAÇÃO - MISTURA RAPIDA :

1.3. Misturador hidraulico: CALHA PARSHAL

Venticação do gradiente de velocidade para mistura rapida - Coagulação. Saida tivre ne calha parshall

							Inicio Res	salto		Fim Res		
O (m ² s)	H (m)	D' (m)	Vo.(m/s)	Eo (m)	× cos #	g	v, (mus)	y, (m)	N° Ett	y ₃ (m)	公里的	V ₂ (m)
0.0624	0.246	0.46D	0.553	0.375	-0,691	2,333	2 232	0,121	2.0	0.296	0.258	0.638
0.0746	0.276	0.460	0.588	0.408	-0.729	2.388	2.285	0.142	1. <u>9</u>	0.324	0.286	0.687
0.0910	0.314	0.460	0.630	0.448	-0.770	2.450	2.345	0.168	1.8	0.358	0.320	0.748


Calendo	gradiente	do w	alacidade
Calculo	gradiente	GB M	HOULUAGE

	hf (m)	T(s)	G (8)	
Inicio Plano	0.064	0.31B	1498	
Med Plano	0,066	0.308	1550	N
Final de plano	0.070	0.296	1625	

Temp. 25 °C Massa específica 997.10 Kg/m² Visosidade 8.94E-95 kg *s /m²

h

⁻Com as vazões de projeto foram calculados os gradientes de mistura, gerando valores ótimos para favorecer o processo de coagulação.

Espessura de paredes	J/dia) : [es ou número equação em	pírica de
Volume de Filtração Diário (V _F)	dia) : [es ou número èquação em eclinante V	5,894.21 m ³ 3.38 un 04 un a de célules, pirica de
* Número de Filtros Necessários	dia) : [es ou número èquação em eclinante V	3 38 un 04 un a de célules, pirica de l'ariàve! 240 (m²m² sia
Número de Filtros Adotados	es ou número equação em	04 un a de célules, pirica de l'ariàve! 240 (m ^h mt-sia
* OBS. Para se ter uma idéia preliminar do número de unidades filtrante em filtros com leito simples e vazões menores que 4,6 m²/s, utiliza-se a utilizar de vallace. 2. Dimensionamento do Filtro Regimen Filtros com Taxa De * Taxa de filtração Máxima Diária Adotada (T _F) Área Necessária para o Filtro (A)	equação em eclinante V 	a de célules, pírica de 'ariáve! 240 (m ¹ m) da
em filtros com leito simples e vazões menores que 4,6 m³/s, utiliza-se a utiliza-se	equação em eclinante V 	pirica de 'ariàve! 240 (m²m² sia
Regimen————————————————————————————————————	:[ariáve! 240 (m ^h m) dia
* Taxa de filtração Máxima Diária Adotada (T _F) ———————————————————————————————————	:[240 (m³/m².ola
Área Necessária para o Filtro (A): V _F / (i x N Largura interna do decantador B Espessura de paredes) :	
Largura interna do decantador B Espessura de paredes		6.14 m ²
Largura interna do decantador B Espessura de paredes		
apeacard de portues		12.25 m
	e	0.25 m
Largura do Filiro Adolado (i)	B :	2.875 m
 Largura dos filtros aproveitando a largura total dos sedimentados 	dores	
Comprimento do filtro	L :[2.15 m
Área de Filtração Efetiva (A _{ef.})	:	6.18 m ²
Taxa de Filtração Efetiva do Filtro (T _{Fel}): V _F / (N x A _e		238.39 (m²/m².dia
Ritros de uma camada Ritcher recomenda 120 - 360 m²/m² dia 3. Descrição do Método de Lavagem do Filtro	- Aug.	
Método de operação: laxa constante		
Entreda no filtro tubulação / difusore Saida dos filtros calha cotetora e sol Método de lavagem descargas continua Número de filtros (N) 64 un Area de Filtração Efetiva (A _{es.}) 6.18 m²	leiras	a geral
*Velocidade de lavagem (U _{tav})	QU	0.81 m/min
VEHICAGO OF RANGETT COLOR 1 1 40.001 HAT		0.17 h
	Qυ	
	Situar entre 7 netro entre 1,	,0 e 1,2
*Duração da lavagem (T _{Lav})	Siluar entre 7 netro entre 1, 2 12216 recor	,0 e 1,2
*Duração da lavagem (T _{Lav})	situar entre 7 Petro entre 1, 1 12216 recoi	.0 e 1,2 menda a 300.41 m ³ /h
*Duração da lavagem (T _{Lav})	Situar entre 7 netro entre 1, 2 12216 recor	,0 e 1,2 menda a
**Duração da lavagem { T _{Lav} } 10 min **OBS: 1. Conforme direttries operacionals o tempo de lavagem deve s 10 minutos e a velocidade assencional de lavagem deve utilizar o parám m/min (PROSAB, Coordenador Di Bernardo, pag 251 e seguinte). A NBR velocidade assencional minima de 50 cm/min 1. Cálculo de Vazões de Lavagem para cada Filtro vazão de Lavagem (Q _{Lav}) U _{Lso} x A _{el}	situar entre 1 netro entre 1. 3 12216 recoi	300.41 m ³ /h 83.45 L/s

5. Meio Filtrante

5.1 Filtro de Areia Espessura da Camada de Areia ----19.78 *Tamanho Efetivo - T. E. - d₁₀ - -----: 0.75 mm 0,5≤ TE ≤ 1,68 Tamanho d₆₀ - -----: 11 mm *Coeficiente de Desuniformidade - C. DU. - - . 1.5 ≤ 1,8

OBS.: Conforme da camada filivante para filtro descendente no projeto de sistema de abastecimento de água utilizado usualmente pela CAGECE.

OBS.: Demais parâmetros conforme recomendações de Di Bernardo e Richter.

6. Camada Suporte

6.1 Camada Suporte com vigas Californianas

Tamanho dos grãos (mm)	Espessura (cm)		volume m ^a
1 1/2" - 1"	15.00	1 Fundo	3,71
1" - 3/4"	7.50	2	1.85
3/4" - 1/2"	7.50	3	1.85
1/2" - 1/4"	7.50	4	1.85
1/4" - 1/8"	7.50	5 Торо	1.85
1	Total 45.0		11.13

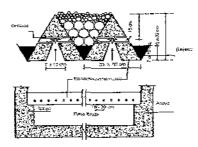


Figura 51. Faisa fancio con vigas en forma de Vinvertido

Comprimento da Viga	: 2.150	ш
Largura da Viga	0.29	m.
Altura de Viga	. 0.30	m
Número de vigas do filtro	; 10.00	unidades
Diametro dos orificios (varia de 9,6 a 19mm)	: 255	സ്ന
Seção unitária do orificio	: 2.54E-04	113 ₅
Espaçamento entre os orificios (10 a 30cm)	0.143	m
Número de orificios por viga	; 14.00	unidades
Número total de orificios	: 140.0	unidades

7, Calha Coletora de Água

Será adotada calha com seção retangular

Comprimento da Calha (L _C)	Lc	:	2.15 m
Akura da Calha (h.)	ħ	:	0.30 m
Largura da Calha (b.):	b	:	0.70 m
Altura da lamina (Ha)	Нa	:	0.20 m
Cálculo da Vazão Máxima na Calha	$Q = 1,38 \cdot b_C \cdot H_a^{-3/2}$:	0.16 m³/s
Vazão de Lavagem::	D.DB3 m³/s	<<	0.16 m²/s
Calculo da carga sobre a calha			
largura da Calha como vertedouro (L.) —:	Lvert	:	4.30 m
Carga sobre vertedouro Ecu Francis:	$Q = 1,838 \cdot L \cdot Hv^{3/2}$		
Carga sobre vertedouro (Hv):	Hv	:	0.048 m

ok

8. Perda de Carga Durante a Lavagem

8.1 Cálculo da Expansão do Leito Filtrante Durante a Lavagem

Porosidade Expandida Global (ε)	:	$(1 - e_{ck})_{\text{and } c_{ck} + c_{ck}} = \frac{1}{\sum_{i \neq j}^{m} \frac{X_{i}}{(1 - e_{ck})}}$
		ε _{ex} : 0.52
Altura Expandida ($L_{\rm f}$)	1	$L_{os} = \frac{(c_0 \times (k + c_0))}{(1 - c_0)^3}$ 0.96 m
*Expensão do Meio Granutar (E _%)		$E(522) = \frac{\Gamma^{10}}{\Gamma^{10}} \times \{600 = \frac{\xi - e^{20}}{e^{20} - e^{20}} \times 1000$
15 ≤ E ≤ 30		E{%}= 20.1 %

 OBS.: Conforme recomendações da CAGECE a expansão do material filtrante davé estar entre 15 a 30%.

A equação do dimensionamento " Lex" adotada é conforme formula de Disamorajah & Cleasby

subcameda	Xi	Deai	XWDeqi	Re	Ga	Çei	XX(1-Ceil
6.60 0.5	9 6.63	0.54	9.05	E.0\$	3.25+03	0,€6	0.05
0.59 0.7	1 807	€ 65	0.11	9 62	5 5E.+03	2.5	0 16
5,79 9,8	1 0.15	6.77	0.21	11,48	9 3E +@3	9.57	6,37
0.83 1 13	0 525	0,92	6.27	13,63	1 68 404	6,53	8.57
1,05	9 0,24	1.09	0.22	16.22	2.68164	6.49	0.47
1.19 1.4	1 0,16	1,39	6.12	15 26	å 35 ÷C4	₽ 48	5,26
141 15	3 5.07	1 54	0.95	22.89	7 4€ • 04	<u>0.41</u>	0,12
1.68 2.0		3,83	0.01	27,25	1,25-405	F, 3/8	0 04
Sometorio	1,96	8,54	1.04	128.45	301.879.50	4,09	2.07

8.2 Perda de Carga no Material Filtrante

Perda de cerga durante a lavagem na camada de areia	:	
$h_{areia} = L_1 \times (1-E_0) \times (\rho_{areia} - \rho_{agos}) \times (1 / pagus)$:	0.77 m
Espessura da camada	. :	080 m
Peso específico da água (25°C)	1	997.1 kg/m²
Peso específico da areia	:	2,650.0 kg/m²
Percentagem de vazio da areia (porosidade)	:	0.42

OBS.: Os cálculos foram realizados através de parâmetros estabelecidos de acordo com as recomendaçõe na NBR-12216.

8.3 Perda de Carga no Material Suporte

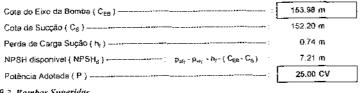
Perda carga	: <u>VaxH</u>	
	3	
Espessura da camada (H)		0.45 m
Taxa de lavagem (Va)		0.81 m/min
Perda de carga no material suporte		0.12 m

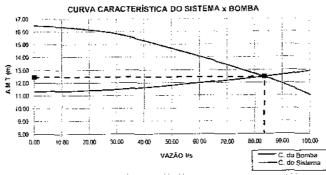
OBS.: Informação retirada do livro de Ritcher e Azevedo Netto

8.4 Perda de Carga nos Furos das vigas californianas

Or 1 4 01 an ma chi Ba 1100 / 4: 1/2	,			
Perda de Carga nos Furos (ha)	- Q ² - C _{d²} x S ²	2 x g	0.66	tt)
Coeficiente de Descarga Adolado			0.65	
Vazān de Lavanem nor Orificio			0.60	

8.4 Perda de Carga na Tubulação de Entrada no Filtro mais distante


Diámetro da tubulação de Entrada no Filtro	:	250 mm
Comprimento da tubulação de Entrada no Filtr	D::	44,00 m
Comprimento de tubulação do barrilete	:	9.00 m
	L _T :	53.00 m
Coeficiente da Fórmula de Hazen-Williams (C	;): F °F° :	100
at a cide de 433 a	4 × Q	1.70 m/s
Velocidade (U)	πx D²	1.10 1143
D. J. D. Care. Div. b. Markin	10,643 x Q ¹⁸⁵	0.01835 m/m
Perda de Carga Distribuída (j)	D ^{4,67} x C ^{1,65}	0.01035 Mino
Perda de Carga por Comprimento (J)	j _L x L	0.97 m
Aceleração de gravidade (g)	:	9 807 m/s²
resolution to granded (g)		


Comprimento da tubulação de Sução	9.00 m
Perda de Carga por Comprimento (J): j. x L	
, orac as on garper a sump	
PEÇA TRECHO EM SUÇÃO	K _{TOTAL}
ENTRADA NA TUBULAÇÃO : 01 x 0.50	: 0.50
CRIVO : 01 x 0.75	0.75
CURVA DE 90° : 04 x 0.40	1,60
TÉ PASSAGEM DIRETA : 01 M 0.60	. 0.60
VALVULA BORBOLETA : 01 × 0.30	0.30
REDUÇÃO GRADUAL : 01 x 0.15	. 0.15
Coeficiente K	3.90
Perda de Carga Locatizada (h _{ref_L}) K _T x (U² / 2g)	; 0.57 ຄ
-	
PEÇA TRECHO EM RECALQUE	K _{TOTAL}
AMPLIAÇÃO GRADUAL : 02 x 0.30	: 0.60
CURVA DE 90 : 06 × 0.40	2.40
TÉ PASSAGEM DIRETA : 03 × 0.60	- 1.80 - 9.60
VÁLVULA DE GAVETA ABERTA 02 × 0.36 VÁLVULA DE GAVETA ABERTA 02 × 0.26	0.40
VÁLVULA DE GAVETA ABERTA : 02 x 0.26 TÉ SAÍDA DE LABO : 02 x 1.30	2.60
SAÍDA DA TUBULAÇÃO : D1 × 1.00	1.00
Coeficiente K	9.40
Perda de Carga Localizada (h _{TEF_L}) —— K _T x (U ² / 2g)	- 1.36 m
.5 PERDA DE CARGA TOTAL	0.57 **
erda localizada Sução bombarrecho em Sução	: 0.57 m : 0.17 m
erda localizada Recalque Bomba:	1.38 m
recho em Recalque	:: 0.97 m
erda de carga nos furos - entrada filtroerda do carga material de suporte	: 0.66 m : 0.12 m
	n 77 —
erda de carga material filtrante	
erda de carga material filiranteerda de carga ла calhe	: 0.05 m
erda de carga material filtranteerda de carga na calhaerda de carga na calhaerda de carga tratal	: 0.05 m : 4.70 m
erda de carga material filtranteerda de carga na calha- erda de carga totalerda de carga total	: 0.05 m : 4.70 m
erda de carga material filtranteerda de carga na calha- erda de carga total	: 0.05 m : 4.70 m
erda de carga material filirante	- 0.05 m - 4.70 m
erda de carga material filirante	-: 0.05 m -: 4.70 m Filtros: 159.96 m : 152.20 m
erda de carga material filtrante	-: 0.05 m -: 4.70 m Filtros: 159.96 m 152.20 m 7.76 m
erda de carga material filtrante	-: 0.05 m -: 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m
erda de carga material filtrante erda de carga na calha erda de carga na calha I. Dimensionamento da(s) Domba(s) Lavagens dos f esnivel Geométrico ota de Recalque (Calha) C _R ota de Sucção (REL) C _S esnível Geométrico (Hg) C _R C _S elura manométrica total (H _g + H _{t roet lavagens}) azão Bomba (m³/h)	-: 0.05 m -: 4.70 m Filtros: 159.96 m 152.20 m 7.76 m
erda de carga material filirante erda de carga na calha erda de carga na calha erda de carga na calha I. Dimensionamento da(s) bomba(s) Lavagens dos f esnivel Geométrico ota de Recalque (Calha) Ca cta de Sucção (REL) Cs esnível Geométrico (Hg) Ca + Cs esnível Geométrica total (Hg + Harout terrison) azão Bomba (m³/h) I. Quadro Geral	-: 0.05 m 4.70 m Filtros : 159.96 m : 152.20 m : 7.76 m : 12.46 m 300.4 m³/h
erda de carga material filirante erda de carga na calha erda de carga na calha I. Dimensionamento da(s) bomba(s) Lavagens dos f esnível Geométrico ota de Recalque (Calha) Ota de Sucção (REL) esnível Geométrico (Hg) CR CR CR CR (Hg + Hrosel Nivegen) azão Bomba (m³/h) I. Quadro Geral Número de Bombas Previstas (N)	0.05 m 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h
erda de carga material filirante erda de carga na calha erda de carga na calha erda de carga total I. Dimensionamento da(s) bomba(s) Lavagens dos l esnível Geométrico ota de Recalque (Calha) ota de Sucção (REL) csnível Geométrico (Hg) esnível Geométrica total esnível Geométrico (Hg) esnível Geométr	
erda de carga material filirante erda de carga na calha erda de carga na calha erda de carga total I. Dimensionamento da(s) bomba(s) Lavagens dos l esnível Geométrico ota de Recalque (Calha) ota de Sucção (REL) csnível Geométrico (Hg) esnível Geométrica total esnível Geométrico (Hg) esnível Geométr	0.05 m 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h
erda de carga material filtrante erda de carga na calha erda de carga na calha erda de carga notal I. Dimensionamento da(s) bomba(s) Lavagens dos f esnivel Geométrico ota de Recalque (Calha) Cs cs esnivel Geométrico (Hg) Cs esnivel Geométrico (Hg) (Hg + Hi roel tavagen) azão Bomba (m³/h) I. Quadro Geral Número de Bombas Previslas (N) Número de Bombas Operando Simultaneamente (n) Rendimento Bomba (ηB) Rendimento Motor (ηM)	0.05 m 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h
erda de carga material filtrante erda de carga na calha erda de carga na calha erda de carga na calha I. Dimensionamento da(s) Domba(s) Lavagens dos f esnivel Geométrico ota de Recalque (Calha) Cs cs esnivel Geométrico (Hg) Cs esnivel Geométrico (Hg) Cla Cs esnivel Geométrico (Hg) I. Quadro Geral Número de Bombas Previsias (N) Número de Bombas Operando Simultaneamente (n) Rendimento Bomba (ηB) Rendimento Motor (ηM) Rendimento do Conjunto Etevatório (η)	0.05 m 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h 02 01 76.1% 91.0% 69.3%
erda de carga na calha- erda de carga no calha- Dimensionamento da(s) Domba(s) Lavagens dos f esnivel Geométrico ota de Recalque (Calha)	0.05 m 4.70 m Fiftros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h 02 01 76.1% 91.0% 69.3% 1.00 Kgf/L
erda de carga material filirante erda de carga na calha erda de carga na calha erda de carga total Dimensionamento da(s) bomba(s) Lavagens dos f esnível Geométrico ota de Recalque (Calha) ota de Sucção (REL) cs esnível Geométrico (Hg) esnível Geomét	0.05 m 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h 02 01 76.1% 91.0% 69.3% 1.00 Kgf/L 10.17 mca
erda de carga material filirante erda de carga na calha erda de carga na calha erda de carga total Dimensionamento da(s) bomba(s) Lavagens dos f esnível Geométrico ota de Recalque (Calha) ota de Sucção (REL) cs esnível Geométrico (Hg) esnível Geomét	0.05 m 4.70 m Siltros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h 02 011 76.1% 91.0% 69.3% 1.00 Kgf/L 10.17 mca 0.43 mca
erda de carga material filirante erda de carga na calha erda de carga na calha erda de carga total Dimensionamento da(s) bomba(s) Lavagens dos f esnível Geométrico ota de Recalque (Calha) ota de Sucção (REL) cs esnível Geométrico (Hg) esnível Geomét	0.05 m 4.70 m Filtros 159.96 m 152.20 m 7.76 m 12.46 m 300.4 m³/h 02 01 76.1% 91.0% 69.3% 1.00 Kgf/L 10.17 mca

例

9.2. Bombas Sugaridus	
Tipo de Bomba Centrifuga: tMBIL OU SIMILAR	INI 150 - 200
Diâmetro do Rotor	198.8 mm
Velocidade do rotor ————————————————————————————————	1,750 rpm
NPSH requerido (NPSH,):	3.37 m
Flanges de sucção	200 mm
Flanges de recaique	150 mm
Momento de Inércia da Bomba (I _B): 0,038 x (P _{kW} N³) ^{0.95} :	0.12418 kg_re ²
Momento de Inércia do Motor (i_M): $0,0043 \times (P_{kW}/N)^{VAB}$.	0.13986 kg.m²
Momento de Inércia do Conjunto Elevatório (I _e + I _M):	0.26405 kg.m²

'Adotar a bomba sugerida ou similar

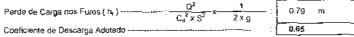
10. Perda de Carga Durante a Filtração 10.1 Perda de Carga no Material Filtrante

$$\frac{H_f}{L_f} = \frac{150 \mu V_O (1-\varepsilon_O)^2}{g \rho \varepsilon_O^3 C_e^2} \sum \frac{X_i}{{D_{gi}}^2} \label{eq:hf}$$

	Areia
Temperatura °C:	25
Velocidade de Filtração (v ₀) m/s	2,76E-03 m/s
Espessura do Lexio (Lf) m	0.80 m
Porocidade do meio filfrante timpo (Eo)	0.42
Coeficiente de esfericidade (Ce)	D.80
Viscosidade dinámica u, em Ns/m²	8.94E-04 Ns/m²
Massa especifica da água, kg/m³:	997.10 kg/m²
Σ Χὐ(Đ ^{g)})² :	116.29
Perda de Carga Total (H _{rr}) m:	0.25 m

1. OBS.: O cálculo da perda de carga na camada de arela, leito limpo, segundo a equação de Fair-Hatch

subcamad	la 10 ⁻³ (m)	Xi	Degi x 10 ⁻² (m)	KifDeqi 10° (m)	Xi4Deqi) ² 10 ⁴ (m)
D.50	0.59	0.03	0.54	0.05	9.76
0.59	0.71	0.07	0.65	9.11	17.00
0.71	0.84	0.16	0.77	0.21	25.73
0.B4	1.00	0.25	0.92	9.27	29.35
1.00	1 19	0.24	1.09	D.22	20.48
1.19	1.41	0.16	1.30	D. 12	9,31
1.41	1.68	0.07	1.54	0.05	2.96
1.68	2.00	0.D2	1.83	0.01	0.71
Soma	tório	1.00	3.64	1.04	116.29



• •	2.00		4	C		24-14-53	Connecto
10.	Z PE	erda.	ae	Carga	nο	Material	Suporce

Perda de Carga Total (H_{II}) m (hí=Vo x Espessura/3)-----: 0.0248 m

OBS.: A perde de carga no material suporte, cascalho, segundo Jorge Arboleda Valencia em Teoria y Practica de Lx Purificación Del Agua ó igual a equação de lavado .

10.3 Perda de Carga nos Furos

OBS.: A perda de carga é calculada considerando a vazão em cada um de seus orificios, e aplica-se a equação da vazão para orifícios e bocais, com o vator do coeficiente de descarga recomendado por Jorge Arbaleda Valencia.

10.4 Perda de Carga na Tubulação de Saída do Filtro mais afastado

Primeiro Diámetro da tubulação de Saída no Filit	250 mm	
Comprimento da tubulação de Saída no Filtro	5.00 m	
Coeficiente da Fórmula de Hazen-Williams (C)	: F°F°	100
Vazão de saida em cada filtro	Q,	: 0.0227 m³/s
Velocidade (U)	4 x Q	. 0.46 m/s
Velociosoe (ti)	π x D²	. 0.40 1113
Perda de Carga Distribuída (j)::	10,643 x Q ^{1,85}	: 0.00166 m/m
reida de Carga Distribulda (†)	D ^{4,87} x C ^{1,85}	. O.Od Ido III
Perda de Carga por Comprimento (J)	j _L x L	0.010 m
Segundo Diámetro da tubulação de Saida no Fil	lf0	: 250 mm
Comprimento da tubulação de Saída no Filtro		3.00 m
Coeficiente da Fórmula de Hazen-Williams (C)	: F°F°	100
Vazão de saida para dois filtros	2 x Q,	: 0.0455 m ³ /s
Velocidade (U):	πx ⊔	0.93 m/s
Perda de Carga Distribuida (j)	10,643 x Q ^{1,85} D ^{4,87} x C ^{1,85}	: 0.00597 <i>m</i> /m
Perda de Carga por Comprimento (J):	j _∟ x L	0.020 m

P	£	c	Δ	S	

PEÇAS					
ENTRADA NA TUBULAÇÃO : 01	X	0.50]∶	0.50	
TÊ PASSAGEM DIRETA : 02	x	0.60]:	1.20	
CURVA 90 : 01	×	0,40]:	0.40	
TÉ SAIDA DE LADO : 01	x	1.30		1.30	
VALVULA DE GAVETA ABERTA : 03		0.20] :	0.60	
SAIDA TUBULAÇÃO : 01	x	0.50]:	0.50	
Coeficiente K			:	4,50	
Perda de Carga (h,) K, x	(V ²	f 2g)	: [0.20 m	
Somatório das Perdas de Tubulação de Saída no Filt	ro		:	0.23 m	
11: Cálculo do Vertedor frontal salda do	s filt	ros (Cai	nara	de Carga)	
Altura de vertedouro deve coincidir com a altura maxim filtros	a de a	areja nos		158.50 m	
Calculo da carga sobre o vertedouro					
largura da Calha como vertedouro (ξ .):		Lverl	:	1.00 m	
Carga sobre vertedouro Ecu Francis Q =	1,838	L . Hv ^{3/2}			
Vazão total entrada			:	0.091 m³/s	
Carga sobre vertedouro (Hv):		Hv	-	0.13 m	
12. Altura do Elitro Resultado do modelo malematico de DiBernardo n	a ope			e filtração	. ::
Nivel de água mínimo dinâmico, togo após o filtro recei- lavado entra em operação.			1 . 0		
Carga Hidráulica Disponível para Filtração. Nivel de ág em que o filtro mais sujo da bateria deve ser lavado.	ua	N.A.	2 : 1	.a m.	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro			2:1		
em que o filtro mais sujo da bateria deve ser lavado.					
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional				.956 m 1.45 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional Altura da Água Filtro sujo			3 : 1	.956 m 1.45 m 1.80 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3:1	.956 m 1.45 m 1.80 m 1.42 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3 : 1	.956 m 1.45 m 1.80 m 1.42 m 0.80 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3:1	.956 m 1.45 m 1.80 m 1.42 m 0.80 m 0.45 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3 : 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.45 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3:1	.956 m 1.45 m 1.80 m 1.42 m 0.80 m 0.45 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3:1	1.45 m 1.80 m 1.80 m 1.42 m 0.80 m 0.45 m 0.45 m 0.30 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			3:1	1.45 m 1.80 m 1.80 m 1.42 m 0.80 m 0.45 m 0.45 m 0.30 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			: 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.15 m 0.30 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			: 1	1.45 m 1.80 m 1.82 m 0.80 m 0.45 m 0.15 m 0.30 m 6.37 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional			: 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.30 m 6.37 m	
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional		А.И	: 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.30 m 6.37 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional		N.A	3 : 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.30 m 6.37 m 158.00 m 159.56 m 159.92 m 160.88 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional		N.A C.N.A.L C.N.A.Z	3 : 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.30 m 6.37 m 158.00 m 159.56 m 159.92 m 160.88 m 161.72 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional	da	N.A	3 : 1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.30 m 6.37 m 158.00 m 159.56 m 159.92 m 160.88 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional	da	N.A C NAL C NAZ C NAZ	3:1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.15 m 0.30 m 6.37 m 158.00 m 156.80 m 159.56 m 159.92 m 160.88 m 161.72 m 161.88 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional Altura da Água Filtro sujo Altura da Água Filtro limpo Altura do Leito Filtrante Altura do Leito Filtrante Altura da Camada de pedreguiho Altura ate orificios das vigas californianas Altura fundo falso Cota fundo filtro Cota do Terreno Cota fundo filtro Cota Comporta de Entrada Cota Nivel Minimo Dinámico Cota Nivel Minimo Dinámico Cota Nivel Filtro Sujo Cota Nivel Maximo água Agua para Lavagem	da	N.A C NAL C NAZ C NAZ	3:1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.15 m 0.30 m 6.37 m 158.00 m 156.80 m 159.56 m 159.92 m 160.88 m 161.72 m 161.88 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da tavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional	da 250	N.A Cmal Cmaz Cmaz Cmaz mms	3:1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.15 m 0.30 m 6.37 m 158.00 m 156.80 m 159.56 m 159.92 m 160.88 m 161.72 m 161.88 m	_
em que o filtro mais sujo da bateria deve ser lavado. Nivel de água do filtro no final da lavagem de um filtro bateria. "Ver em anexo relatorio completo Altura Livre Adicional Altura da Água Filtro sujo Altura da Água Filtro limpo Altura do Leito Filtrante Altura do Leito Filtrante Altura da Camada de pedreguiho Altura ate orificios das vigas californianas Altura fundo falso Cota fundo filtro Cota do Terreno Cota fundo filtro Cota Comporta de Entrada Cota Nivel Minimo Dinámico Cota Nivel Minimo Dinámico Cota Nivel Filtro Sujo Cota Nivel Maximo água Agua para Lavagem	250 300	N.A C.N.A.Z C.N.A.Z C.N.A.J TIMB	3:1	1.45 m 1.80 m 1.42 m 0.80 m 0.45 m 0.15 m 0.30 m 6.37 m 158.00 m 156.80 m 159.56 m 159.92 m 160.88 m 161.72 m 161.88 m	_

FOLHA DE DADOS

CEIV 3.0

Nº Proposta:

Data:

Tam

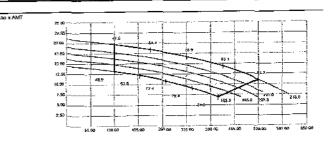
Tag:

Cliente: SAA JAGUARIBE

Projeto: LAVAGEM FILTROS

irrigação, saneamento, indústrias têxteis, químicas e petroquímicas, papel e cetulose usinas de açucar a alcool e destilarias

Material Construtivo:	
PEÇA	MATERIAL
Apol de despas la	A48 CL 30


Anel de desgaste	A48 CL30
Bucha protetora	SAE 1020
Carcaça	A48 CL30
Eixo	SAE 1045
Managed / Coursiple	A46 CE30

Vezto x Ravdimento

	Ter. est
PEÇA	A PROBERY COMPANY
Rotor	A4a eedo
oa de pressão	A48 CL30

Condições de Operação:

	,				
Liquido Bombeado:			NPSH Requerido:	3.37	m
Peso especifico:	1 00	kgf/dm³	NPSH Disponivel:		m
Viscosidade:		cst	Rotação:	1750	₽₽M
Temperatura.	25.00	۰C	Rendimento:	76.1	%
Vazāo Nominal:	300.40	m³/h	Potência Consumida:	18.21	CV
Altura Manométrica:	12.46	m	Motor Recomendado:	25.00	Çν
Pressão de Sucção:		kgf/cm²	AMT Máx (Rotor Projeto):	16,7	m
Pressão de Descarga:		kgf/cm²	Pot. Máx (Rotor Projeto):	15.98	cv
Pressão Diferencial:		kgf/cm²	Vazão Minima Continua:	130.4	m³/h

Dados Construtivos:

Tipo: Centrifuga Jorpo Bipartido: Radial

Rotor: Fechado

Diámetro(mm); Máximo; 218

Minimo: 185

Projeto: 198,8

GD²{Kgf.m²}: 0.2917

Rotação(Vista lado Acop.): Horário

Acessórios:

Base: Metálica Tipo. Viga U 4" Protetor de Acoptamento: Sim

Acoplamento, Marca:

Modelo:

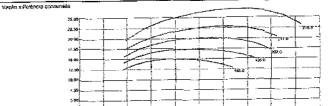
Τιρα:

Modelo:

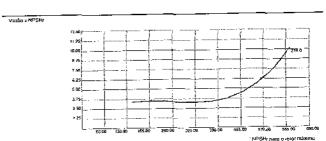
Pleno de Selagem:

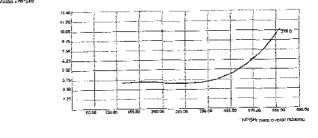
Vedação do Eixo: Motor Elétrico: Marca: Weg

Poténcia (cv): 25,00


Rotação(RPM): 1750

Proteção: IP55


Tensão (V):


F.S: 1,15

Isplação: Classe F

Pesos (Kg)

Acoplamento: 3.46

66.47

Notas:

Itapira-SP

Responsável:

<u> 192</u> Página 1

Total: 396.58

198.65

128

Bomba:

Motor:

<u>Dimensionamento do Tanque de Contato</u> Tanque de Contato de Cloro (Municipio de Jaguaribe - Estado do Ceará)

. Dimensionamento do Tanque de Contato			1 4 May 1
Vazão Total	Q ₍₂₀₎	:	91,0 L/s
Tempo de detenção:	Т	:	20 min
Altura util:	ħ	:	2,00 m
Folga entre laje superior e lamina da água	f	:	0,85 m
Volume:	$V = Q(20) \times T$:	111,55 m ³
Área::	A = V / h	:	55,78 m ²
Fig Esquemático do Tanque de contato			
Numero de chicanas	n e L B = ne + (n+1)xb' b'	: : : : : : : : : : : : : : : : : : : :	5 un 0,15 m 5,00 m 7,50 m 1,13 m
. Dimensões Tanque de Contato	en jeden gruppe in en state Også en gruppe in en state	Service d	#1 # 1#
Base do Tanque:	В	:	7,50 m
Largura do Tanque de contato	Ĺ	:	5,00 m
Altura Total do Tanque contato:	H = h + f		2,85 m
. Cotas de Implantação da Estrutura			
Cota do terreno	Tn	:	158,00 m
Cota de Entrada	C.00	:	156,15 m
Cota de Saida:	C ₋₀₁	:	158,15 m
Cota de Galda	~·U1		

				_	permanente
					Late Late
				/s _	_ 754
				(8	Fis (i)
4. Dimensionamento Bomba Sistema de C	loração (B	ooster'	Υ''	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
4.1. Resumo do Quadro de Vazão de Aduç		777 T.	() in the	18 h	C.P.L
Tempo de Bombeamento (T _b)		·	- :		P ledizinum
Vazão do Sistema:		Q	:	2,09 m³/h : 0,58 L/s	
			:	0,00058 m3/s	_
4.2. Adução Caminhamento			:	43,80 m	1
Recobrimento			:	0,60 m]
Subida tanque de contato Comprimento Total			:	0,90 m 45,30 m	
Diâmetro Econômico (D'):		2 4 \^1 ^M x	Q ^{0,5}	29,00 mm	
Diametro Economico (D)					7
		ro Comeri Iaterial	cial :	32,00 mm PVC	4
Malandada (MA)		Q	·	0,72 m/s	-
Velocidade (V) :	πх	(D/2) ²		. 0,72 1123	_
4.3. Cotas		C		158,15 m	
Cota de Recalque		C _R C _s		156,15 m	
Desnivel Geométrico (Hg)	C	C _R - C ₅	:	2,00 m	
					-
4.4. Cálculo das Perdas de Carga na Tubu	ilação (Pred	cioraçã	0)		
4.4.1. Perdas de Carga ao Longo da Tubulação de Re	ecalque		5) (0)	130	7
Coeficiente da Fórmula de Hazen-Williams (C)			PVC :	130	_l _
Coeficiente do Material (K)			:	18,0]
Espessura da Tubulação (E)			:	2,1 mm]
Velocidade (V)				0,72 m/s	
Perda de Carga Distribulda (j)	10,6	43 x Q ^{1,85}	; 	0,025663 m/m	
		x L		1,16 m	
, 100 00 00 ga por 00 mp.m. (=)	1	. ^ _		1,10	
4.4.2. Perdas de Carga na Tubulação de Sucção Material da tubulação:				PVC	7
				420.0	- 7
Coeficiente da Fórmula de Hazen-Williams (C)				130,0	_ _
Diâmetro Comercial Adotado (D)		·		32 mm	_]
Velocidade (Vs)				0,72 m/s	
				0,025663 m/m	
Perda de Carga Distribuída (j):	D ^{4,8}	⁸⁷ x C ^{1,85}			٦
Comprimento (Ls) Perda de Carga por Comprimento (Js)		x L		0,8 m 0,021 m	
4.4.3. Perdas de Carga Localizada	30	-		•	
Aceleração da gravidade.(g) ——————————————————————————————————	 -		:	9,81 m/s ²	ſ
	O _{Ids}			K _{TOTAL}	-
PEÇA	Q.		K _{⊍NIT.}	NIGIAE	
	7	1	0.75	. 0.75	
Crivo :		×	0,75	0,75	
Curva de 90°	01	×	0,40	0,40	
Curva de 90° : Valvula borboleta aberta :	01	x x	0,40	0,40	
Curva de 90°	01 01 01	×	0,40	0,40	

			_
	RECALQUE		K _{TOTAL}
PEÇA	Q ^{lde}	K _{UNIT.}	K _{TOTAL}
Ampliação gradual	: 01 ×	0,30	0,30
Curva de 90°	: 05 x	0,40	2,00
Valvuia de retenção	: 01 ×	2,50	2,50
Valvula borboleta aberta	: <u>00</u> x	0,30	00,00
Tê saida de lado	: 01 ×	1,30	1,30
Tê passagem direta	: 00 ×	0,60	0,00
Valvula de gaveta aberta	: 01 ×	0,20	0,20
Saida de canalização	: <u>01</u> x	1,00	1,00
Coeficiente K de Recalque			7,30
Perda de Carga no Recalque (h,)	: K _r x (V ² / 2g	;	0,194 m
Perda de Carga Localizada (h _f)	: h, +	h _s :	0,24 m
.4.4. Perda de Carga Total			
Perda de carga Sucção (hfs)) _{is} :	0,063 m
Perda barrilete saida (hfi)			0,19 m
Perda de carga no injetor de Cloro	: Injetor (c	~ ,	21,06 m
Perda de Carga Total (H _J)	: J+ h _i	i :	22,48 m
I.5. Cálculo da Altura Manométric			
Perda de Carga Total (H _j)		:	22,48 m
Desnivel Geométrico (Hg)		·	2,00 m
Altura Manométrica (H _{man})	: (H _g + I	⊣ _į) :	24,48 mca
5. Análise da Sobrepressão na Tul	bulação	. [18,0
Coeficiente do Material (K)			
Espessura da Tubulação (E)			2,1 mm
Diâmetro da Tubulação (D)		:	32 mm
Celeridade (C)		D/E) ^{0,5}	551,20 m/s
Acrescimo de Pressão (H _a)			40,56 m.c.a.

(*) Pressão maxima suportada pela tubulação soldayet é de 7.5 Kgrf/cm² (75 mca), marca tigre.

M

5. Dimensionamento da(s) bomba(s) Número de Bombas Previstas (N)	02
	01
Número de Bombas Operando Simultaneamente (n)	
Rendimento Bomba (ηB)	36.30% 80.50%
Rendimento Motor (nM)	29.2%
Vozão da Romba (O)	0.58 L/s
Peso específico da água (y)	1.00 Kgf/L
Pressão almosférica (p _{a / v})	10.16 mca
Pressão de vapor a 30°C (p _{v t y}) :	0.43 mca
Fator de Serviço (FS)	1.50
Potência da Bomba (Po) $\frac{\text{FS x } \gamma \times \text{Q x H}_{\text{man}}}{\text{n x 75 x } \eta}$	0.973 CV
Cota do Eixo da Bomba (C _{EB})::	158.30 m
Cota de Sucção (C ₅)	156.15 m
Perda de Carga Localizada (h,)	0.06 m
NPSH disponível (NPSH _d)	7.52 m
6.1. Quadro-Resumo das características das bombas Potência Adotada (P)	1.0 CV
Vazão da Bomba (Q)	2.09 m ³ /h
Altura Manométrica (H _{man})	24.48 mca
6.2. Bombas Sugeridas Tipo de Bomba Centrífuga	32 (4
Potência	1.0 CV
Vazão de Serviço	2.09 m ³ /h
Altura Manométrica p/ a Vazão de Serviço :	24.48 mca
Velocidade do rotor	1,750 rpm
NPSH requerido (NPSHr)	6.70 rpm
Diâmetro do Rotor	110.5 mm
Flanges de sucção:	40 mm
Flanges de recalque::::::::::::::::::::::::::::::::	32 mm
CURVA DA BOMBA	 -
4.56:44	
*	
3.00	
24.00	•
20.40 28.5 12.8	i
	!
12.00	
4.657	:
Ca vigity	i 1
* 0.0 2.00 3.00 4.20 5.00 8.00 8.00 8.00 8.00 8.00 8.00 8.0	N-N

-Para o sistema de Pos-Cloração adopta-se uma bomba de 1 CV com mesmas características.

ħ

Estação e Tratamento de Rejeitos Gerados-ETRG

(Município de Jaguaribe - Estado do Ceará)

1. Volumes Gastos na Lavagem de cada filtro e na ETA

Volume Total Gasto lavagem de cada
filtro -------Volume Total Gasto em todos os filtros
(V_{Total_Filtros})

Volume Total Gasto Decantador
V_{Decontador_P}

Volume Total Gasto / dia de operação

V_{Reros + Decantadores}

51.07 m³

204.28 m³

V_{Decontador_P}

11.79 m³

62.86 m³

2. Densidade de lodo gerado na coagulação por m3

 S (densidade de lodo gerado)
 : (0.2 x C + K₃ x T + K₄x D)/1000 : 0.07118 Kg/m³

 Onde

 C (cor)
 : 67.86 H

 T (turbidez)
 : 39.31 UnT

 D (dosagem de coagulante)
 : 25.00 mg/L

 K₃
 : 1.30 adotado

 K₄
 : 0.26 (sulfato de alumínio)

3. Volume médio e massa de sólidos e lodos precipitados anualmente pela ETA

V (volume anual de lodos produzidos) : (365 x t x Q_{AAB-20}) : 1,792,821.23 m³

Onde:

t (tempo em segundos de funcionamento da ETA por dia) : 64800.00 s

Q_{AAB-20} (vazão de adução de água bruta) : 0.0910 m³/s

K, (coeficiente adotado) : 1,20

^{1.} OBS.: A fórmula de densidade de lodo gerado foi retirado do livro de Carlos A. Ríchter, Tratamento de Lodos de Estações de Tratamento de Água

^{2.} OBS.: conforme laudos de água bruta fornecidos pelo SAAE, a captação no rio Jaguaribe, os valores são a media anual desde Novembro 2010 a Novembre 2011

Ms (massa de sólidos precipitados

por ano)

S x V : 127604.05 Kg

Onde:

S (densidade de lodo gerado)

0.071 Kg/m³

V (volume anual de lodos produzidos) :

1792821.234 m³

 $M_L(massa de fodos precipitados por ano): <math>M_S/C_O$

5104162.1 Kg

Onde

M_S (massa de sólidos precipitados por

127604,051 Kg

ano)

C_o (concentração de sólidos esperada) :

0.025

1. OBS.: A concentração de sólido esperada é de 2,5% (adotada)

4. Volume de lodos produzidos anualmente

Densidade dos lodos líquidos (δ_t)

. : ______1

1011.24

Kg/m3

Onde:

Co (concentração de sólidos esperada) :

0.025

Densidade dos lodos secos(δ_5)

 δ_{S}

1,800 Kg/m3 (adotada)

Densidade da água(δ)

ō

1,000 Kg/m³

Volume de lodos (V_L)

M_L δL **5047.45** m3

OBS.: A fórmula do volume de todos foi retirado do livro de Carlos A. Richter, Tratamento de Lodos de Estações de Tratamento de Água

OBS.: A fórmula do volume de lodos foi retirado do livro de Carlos A. Richter, Tratamento de Lodos de Estações de Tratamento de Água

5. Leitos drenantes

Numero filtros para lavar por dia (adotado)

1 Und /dia

horas de operação dos filtros descendentes

18 horas/dia

Numero de filtros

4 and

Volume de lavado por filtro

51.07 m³

Volume limpeza dos decantadores

11.79 m³

Volume total

62.86 m³

Obs: Segundo o SAAE, o periodo medio de lavado dos filtros existentes é de 5 días (120 horas de operação).

Obs: Estimamos que cada filtro descendente projetado teria 18h x 4 und= 72 horas de operação.

Altura leito drenanțe	Н	: .	0.70	m
Altura da zona de armazenamento de lodo	H lodo	:	0.05	m
Altura da zona de transição	H trans	:	0.25	m
Altura de armazenamento da água de lavagem	H armaz	:	0.30	អា
Altura livre	H livre	:	0.10	m
Area necessaria	Α	:	209.5	m²
Quantidade de leitos	n	;	2	
Lado util do leito	L1	:	17	m
Lado utii do leito	L2	;	6.2	m
Area total utilizada	Atotal	:	210.8	m³
Tempo medio de operação leito drenante (adotado)	Horas	:	2	horas
Vazão media do leito drenante		:	31,43	m³/h

^{*} OBS.: 2. Especificações da manta em anexo

^{*} OBS.: Os lodos acumulados no leito drenante, serão lançados em aterro sanitário de uso comum de Jaguaribe, Nova Jaguaribara e Alto Santo.

6. Dimensionamento de Produtos Químicos ETRG

Kit tanque de preparação de Polimero de 70 Litros incluindo bomba

dosadora de diafragma e agitador

6.1. Resumo do Quadro	de	Vazão
-----------------------	----	-------

Tempo de Bombeamento filtros (Tb Filtros)	:	0.17 h
	;	300.41 m ³ /h
Vazão do Sistema: Q _(L)	av Fillros)	83.45 L/s
	:	$0.083 \text{ m}^3/\text{s}$
	:	50.07 m³/dia
6.2. Consumo polimero		
Pureza mínima		90.00 %
Dosagem média	;	5.00 g/m³
Vazāo	:	50.07 m³/dia
Período máximo de trabalho da ETA (Lavagem Filtros)		0.17 h
Consumo teórico (C _T)	:	0.25 kg/dia
Consumo real (C_R) (conforme percentagem de impurez	(a):	0.28 kg/dia
Volume a armazenar mínimo (15 dias) (V _R)		4.17 kg
Tempo de armazenamento adotado (T _A)		30.00 dias
Volume a armazenar (V _{AA})	<u></u>	8.35 kg
Número de sacos (N _S) (40 kg)		1 sacos
Área ocupada - pilhas com 5 sacos (0,30 m² por pilha)	;	0.06 m ²
Acréscimo de 20% na área para renovação do estoque		0.01 m ²
6.3. Tanque de Preparação da Solução do Polí	mero	
Concentração da solução ————————————————————————————————————	- <u></u>	5.00 %
Dosagem média		5.00 g/m³
Consumo real	 :	0.28 kg/dia
Período máximo de trabalho da ETA (T _{ETA})	:	0.17 h
Vazão	 :	300.41 m³/h
Vazão de dosagem	::	30.04 L/h
Volume consumido		5.01 L
Volume comercial do tanque		70 ∟
Número de Tanques (01 Operando e 01 Preparando)	:	2 un
Preparação da dosagem		vez/sema na
6.4. Acessórios do Dosagem		

2 un

7.0 Dimensionamento do Reservatório Enterrado Reunião.

:	30.0 m3
:	2.30 m
:	6.00 m
	2.17 m
:	2.20 m
:	149.50 m
:	0.20 m
:	0.20 m
:	2.20 m
:	3.20 m
:	0.40 m
:	0.20 m
:	151.70 m
:	149.70 m
:	2.80 m
:	1.00 m
:	0.80 m
1 <i>P</i>	
:	250 mm
:	D/50
:	90.37 L/s
	: : : : : : : : : : : : : : : : : : :

<u>Dimensionamento do Sistema de Tratamento</u> Estação Elevatória de Rejeitos Gerados (EERG)

(MUNICIPIO DE JAGUARIBE - CE)

1. Resumo do Quadro de Vazão d		
Tempo de Bombeamento (T _b)		: 24 h
Coef. Adotado (k ₁)		: 1,1
Vazão do Sistema::	Q_eerg	: 31,43 m ³ /h
	Q_EERG X k1	: 34,57 m ³ /h
	Q_EERG X k1	9,60 L/s
		: 0,00960 m³/s
2. Adutora de Água para retorno	á Calha Parshail	
Caminhamento Perfil		47,70 m
Recobrimento		0,90 m
Subida PARSHALL		16,00 m
Comprimento Total		: 64,60 m
Diâmetro Econômico (D'):	$1,3 \times (X/24)^{^{114}} \times Q^{9,5}$: 127,00 mm
Diâmetro Adotado (D)	Diâmetro Comercial	: 150 mm
	Diâmetro Interno	: 156,4 mm
	Material	: PVC DEFOFO
W. L. 14-1-100	Q	: 0,50 m/s
Velocidade (V):	$\pi \times (D/2)^2$. 0,50 1185
3. Estação Elevatória de RG		
Cota de Recalque:::	C_R	: 164,45 m
Cota de Sucção::	Cs	: 149,70 m
Desnivel Geométrico (Hg):	CR - CS	: 14,75 m
4. Cálculo das Perdas de Carga n	a Tubulação	
4.1. Perdas de Carga ao Longo da Tubula	DV/0	
Coeficiente da Fórmula de Hazen-Williams	(C) PVC DEFOFO	130
Coeficiente do Material (K)		18,0
Espessura da Tubulação (E)		6,8 mm
Velocidade (V)		0,50 m/s
Perda de Carga Distribuída (j.)::	10,643 x Q ^{1,85} D ^{4,87} x C ^{1,85}	: 0,002031 m/m
Perda de Carga por Comprimento (J):	j _L x L	: 0,13 m

4.2. Perdas de Carga na Tubulação de Sucção

Material da tubulação:	FoFo
Coeficiente da Fórmula de Hazen-Williams (C) :	100,0
Diàmetro Comercial Adotado (D) :	150 mm
Diâmetro Interno (D) :	159,6 mm
Velocidade (Vs) :	0,48 m/s
Perda de Carga Distribuída (j.) ————————————————————————————————————	0,002991 m/m
Comprimento (Ls):	2,0 m
Perda de Carga por Comprimento (Js): j_L × L :	0,006 m

4.3. Perdas de Carga Localizada

Coeficiente K de Sucção -----

Perda de Carga na Sucção (h_s) ----- $K_s \propto (V s^2 / 2g)$

9,81 m/s² Aceleração da gravidade (g) ----- :

	<u>SUCÇÃO</u>		
PEÇA	Q ^{tde}	K _{UNIT.}	K _{TOTAL}
Crivo	. 01	x 0,75	0,75
Curva de 90°	: 01	x 0,40	0,40
Valvula borboleta aberta	: 01	x 0,30	0,30
Redução gradual	: 02	x 0,15 :	0,30
iente K de Sucção			1,75

0,02 m

RECALQUE					
PEÇA	Q ^{!de}	K _{UNIT.}		K _{TOTAL}	
Ampliação gradual :	02	x 0,30	:	0,60	
Curva de 45° ;	02	x 0,20	:	0,40	
Valvula de retenção :	01	x 2,50	:	2,50	
Valvula borboleta aberta :	01	x 0,30	:	0,30	
Tê passagem direta :	03	× 0,60	:	1,80	
Curva de 90°	08	x 0,40	;	3,20	
Saida de canalização :	01	x 1,00	:	1,00	
Coeficiente K de Recalque			:	9,80	
Perda de Carga no Recalque (h,)	K, x (V	² / 2g)	:	0,12 m	
Perda de Carga Localizada (h _f):	h _r	+ h _s	:	0,15 m	
4.4. Perda de Carga Total					
Perda de carga Sucção (hfs)::	Js	+ h _{is}	:	0,03 m	
Perda barrilete e recalque (hfi):	h _{fbærrilete}	, h recalque	:	0,26 m	
Perda de Carga Total (H _J):	J L +	hfs + h _{fi}	:	0,28 m	
5. Cálculo da Altura Manométrica					
Perda de Carga Total (H _j)			:	0,28 m	
Desnivel Geométrico (Hg)	- -	·	;	14,75 m	
Altura Manométrica (H _{man}):	(H ₉	+ H ₅)	:	15,03 mca	
6. Análise da Sobrepressão na Tu	bulação				
Coeficiente do Material (K)	-		: [18,0	
Espessura da Tubulação (E)			: [6,8 mm	
Diâmetro da Tubulação (D)			: _	156 mm	
			460,44 m/s		
Celeridade (C):	(48,3 + K	x D / E) ^{0,5}	. 400,44 1105		
Acrescimo de Pressão (H _a):	Сх	V/g	:	23,46 m.c.a.	
Pressão Máxima de Solicitação (P _{máx.}) :	H _a +	H _{man.}	:	38,49 m.c.a.	

7. Dimensionamento da(s) bomba(s)

Segundo José Maria de Azevedo Netto, deve-se admitir, na prática, uma folga para os motores elétricos. Os seguintes acréscimos são recomendáveis:

Para as bombas até 2 cv	50 %
Para as bombas de 2 a 5 cv	30 %
Para as bombas de 5 a 10 cv	20 %
Para as bombas de 10 a 20 cv	15 %
Para as bombas de mais de 20 cv	10 %

Os motores elétricos brasileiros são normalmente fabricados com as seguintes cv: 1/4; 1/3; 1/2; 3/4; 1; 1 1/2; 2; 3; 5; 6; 7 1/2; 10; 12; 15; 20; 25; 30; 35 cv: 40; 45; 50; 60; 80; 100; 125; 150; 200 e 250

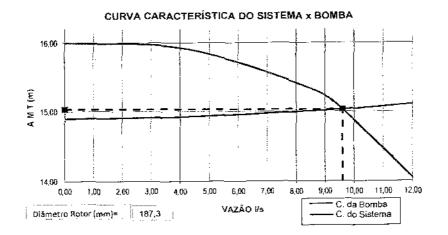
Para potências maiores os motores são fabricados sob encomendas. Nos catálogos dos fabricantes há potências de motores elétricos fabricados diferentes dos especificados acima.

7.1. Quadro Geral

~	
Número de Bombas Previstas (N):	02
Número de Bombas Operando Simultaneamente (n):	01
Rendimento Bomba (ηB):	72,6%
Rendimento Motor (nM)	87,5%
Rendimento do Conjunto Elevatório (η) :	63,5%
Vazão da Bomba (Q)::	9,60 L/s
Peso específico da água (γ)	1,00 Kgf/L
Pressão atmosférica (p _{a/x})::	10,17 mca
Pressão de vapor a 30°C (p _{v/y}):	0,43 mca
Fator de Serviço (FS) :	1,20
Potência da Bomba (Po) :	3,64 CV
Cota do Eixo da Bomba (C _{EB}) :	150,12 m
Cota de Sucção (C _S):	149,70 m
Perda de Carga Localizada (h _f):	0,03 m
NPSH disponivel (NPSH $_{d}$):	9,29 m
7.2. Quadro-Resumo das características das bombas	
Potência Adotada (P):	5,00 CV
Vazão da Bomba (Q)::	34,57 m ³ /h

Altura Manométrica (H_{man}) ------

15,03 mca



7.3. Bombas Sugeridas

Tipo de Bomba Centrifuga:	IMBIL OU SIMILAR	:	ITAP 65 - 200
Potência		:	5,00 CV
Vazão de Serviço	<u>-</u>	:	34,57 m ³ /h
Altura Manométrica p/ a Vazão de Serviço -		:	15,03 mca
Diâmetro do Rotor		:	187,3 mm
Velocidade do rotor		:	1.700 rpm
NPSH requerido (NPSH,)		:	2,37 m
Flanges de sucção		:	80 mm
Flanges de recalque		:	65 mm
Momento de Inércia da Bomba (I _B):	$0.038 \times (P_{kW}/N^3)^{0.96}$:	0,02879 kg.m²
Momento de Inércia do Motor (I _M):	$0,0043 \times (P_{kW}/N)^{1,48}$:	0,01349 kg.m²
Momento de Inércia do Conjunto Elevatório	(I _B + I _M)	:	0,04228 kg.m²

* Adotar a bomba sugerida ou similar

FOLHA DE DADOS

CEI V 3.0

Nº Proposta:

Data:

ម្លី / 4 / 2<u>016</u>

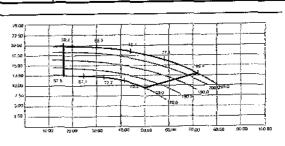
Cliente:

Projeto:

ITAP 65-200

ndustrias	tēxteis,	saneamento,	imigação	É
hombo	amento	de timidae e	or necti	

idustrias texteis,	saneamento,	imigação e
bombeamento	de tiquidos e	m gerai


Materia	ĺ	Constr	utivo:

Material Construtivo:			The same of the sa
PECA	MATERIAL	PEÇA	MATERIAL_
Anel de desgaste	A48 CL30	Eixo	SAE 1045
Bucha protetora	SAE 1020	Mancal / Cavalete	A48 CL30
Carcaca	A46 CL30	Roter	A48 CL30
Corpo de estágio	A48 CL30	Tampa de pressão	A48 CL30
Dituspr	A48 CL30		

Condições de Operação:

Líquido Bombeado:			NP\$H Requerido:	2.37	TT)
Pesa específica:	1.DO	kgf/dm³	NPSH Disponivel:		ជា
Viscosidade:		cst	Rotação:	1700	RPM
Temperatura.		o C	Rendimento:	72.6	%
Vazāc Nominal:	34.57	m³/h	Potencia Consumida:	2.65	CV
Altura Manométrica	15.03	m	Motor Recomendado.	3.00	ÇV
Pressão de Sucção:		kgf/cm²	AMT Máx (Rotor Projeto):	16.0	m
Pressão de Descarga:		kgf/cm²	Pol. Máx (Rotor Projeto):	3.86	CV
Pressão Diferencial:		kgt/cm²	Vazão Minima Continua:	16.3	m³/h

Tag:

Dados Construtivos:

Tipo;	Centrifuga
Corpo Bipartido:	Radial
Rotor	Ferinado

Projeto: 187.3 Diámetro(mm): Máximo: 205 Minimo: 170

GD*(Kgf.m*), 0,0556

Rotação(Vista lado Acop.): Horário

Pintura:

Acessórios:

Base: Metalica Tipo: Chapa dobrada 1/4"

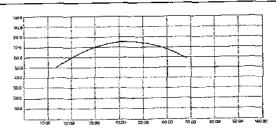
Protetor de Acoptamento: Sim

Acoplamento: Marca:

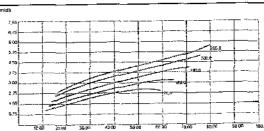
Modelo: Vedação do Eixo: Motor Elétrico: Marca: Weg

Tipo:

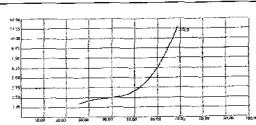
Potěncia (cv): 3,00 Rotação(RPM): 1700 Proteção: IP55


Modelo:

Plano de


Selagem:

Tensão (V): F.S: 1,15 Isolação: Classe F


Va259 x Readimento

Vazāg x Polēncia consumida

Vagad v NPSHr

Pesos (Kg)

18.87 Bomba: Motor: 23

Acoplamento: 0.93

Total: 99.8

Notas:

Itapira-SP

Responsável:

Página 1

<u>Dimensionamento do Sistema de Tratamento ETA (20 anos)</u> { <u>Município de Jaquaribe - Estado do Ceará }</u>

1. Cotas de Implantação da Estrutura (Tanque de Contato - RAP_1100m³)

1.1 Ramal principal

a) Perda de Carga Continua

A perda de carga contínua (h_e) é dada pela fórmula de Hazen-Williams:

 $h_{tc} = 10,643 \times Q^{1.85} \times C^{-1.85} \times D^{-4.87} \times L$

onde:

Q = vazão / filtro (m³/s) 0.0910 m³/s

C = coeficiente de rugosidade 100 FoFo
D = diâmetro da tubulação (m) 350 mm
L = extensão da tubulação (m) 50.2 m

hfc = perda de carga continua

b) Perda de Carga Localizada

 $h_{\mathbf{g}} = \sum \mathbf{k} \times \mathbf{v}^{\mathbf{q}} / 2\mathbf{g}$

onde:

k = coeficiente relativo às perdas de carga nas singularidades

 v = velocidade na tubutação (m/s)
 0.95 m/s

 g = aceleração da gravidade (m/s²)
 9.81 m/s²

 hfl = perda de carga localizada
 0.19 m

 J = perda de carga unitaria
 7.95 m/km

Constantes de Perda de Carga

		Coeficiente K		
Peça	Quant.	Unitário	Total	
Entrada normal	1.00	0.50	0.50	
Curva 90°	5.00	0.40	2.00	
Valvula de gaveta aberta	1.00	0.20	0.20	
Tê saida de lado	1.00	1.30	1.30	
Redução gradual	1.00	0.15	0.15	
Saida	1.00	1.00	1.00	
		Somatório	4,15	

c) Perda de Carga total

h = perda de carga total = h_s + h_f

0.40 m

FoFo

0.21 m

Cota do terreno (Tanque de Contato)	:	TΠ	:	158.00 m
Cota Entrada (RAP-1100)	:	NA_{rap}	:	155.30 m
Cota saida Tanque de contato		C-00	:	158.15 m
Cota de Entrada Tanque de contato	:	C.01	:	156,15 m
Cama disponivel entre as estruturas	:	h	:	2,45 m

2. Cotas de Implantação da Estrutura (Camara de Nivel - Tanque de Contato)

2.1 Ramal principal

a) Perda de Carga Continua

A perda de carga contínua (n_{ic}) é dada pela fórmula de Hazen-Williams:

 $h_{tc} = 10,643 \times Q^{1.86} \times C^{-1.85} \times D^{-4.87} \times L$

onde:

Q = vazão / filtro (m³/s) 0.0910 m³/s

C = coeficiente de rugosidade 100
D ≈ diâmetro da tubulação (m) 350 mm
L = extensão da tubulação (m) 1.5 m
hfc = perda de carga continua 0.01 m

b) Perda de Carga Localizada

 $h_{fl}= \mathbb{S} k \times \nu^{\alpha} / \, 2g$

onde:

k = coeficiente relativo às perdas de carga nas singularidades

 v = velocidade na tubulação (m/s) 0.95 m/s

 g = aceleração da gravidade (m/s²) 9.81 m/s²

 hfi = perda de carga localizada 0.08 m

Constantes de Perda de Carga.

	, , , , , , , , , , , , , , , , , , ,	Coeficiente K	
Peça	Quant.	Unitário	Total
Entrada normal	1.00	0.50	0.50
Valvula de gaveta aberta	1.00	0.20	0.20
Saida de canalização	1.00	1.00	1.00
		Somatório	

c) Perda de Carga total

n = perda de carga total = n _{fe} + n _{fi}	0.08 m	
Cota do terrego	: Tn	:

 Cota de Entrada Tanque de contato
 : C_{CI2}
 : 156.15 m

 Cota NA camara de carga (Saida)
 : C₋₀₀
 : 158.15 m

 Cota Vertedouro Camara de Carga
 : 158.50 m

 Cota Lamina D'agua sobre o Vertedouro
 : 158.63 m

3. Cotas de Implantação da Estrutura (Filtro - Camara de Nivel)

Cota de saida Camara de Carga	:	158.15 m
Cota Lamina D'agua Filtros limpo	:	159.92 m
Cota Lamina D'agua Filtros sujo	:	161.72 m
Cota Entrada Filtros		159.56 m

4. Cotas de Implantação da Estrutura (Calha Parshall- Flocodecantador)

4.1 Ramai principal

a) Perda de Carga Continua

A perda de carga continua (h_{fc}) é dada pela fórmula de Hazen-Williams:

$$h_{fc} = 10,643 \times Q^{1.85} \times C^{-1.85} \times D^{-4.87} \times L$$

onde

Q = vazão / filtre (m³/s)	0.0910 m³/

C = coeficiente de rugosidade	100	FoFo
D = diametro da tubulação (m)	350 mm	
L = extensão da tubulação (m)	10 m	
hfc = perda de carga contínua	0.04 m	

b) Perda de Carga Localizada

 $b_0 = \Sigma k \times v^2 / 20$

onde:

k = coeficiente relativo às perdas de carga nas singularidades

v = velocidade na tub	ulação (m/s)	ū	_	0.95 m/s
g = aceleração da gra				9.81 m/s ²

hft = perda de carga localizada 0.10 m

Constantes de Perda de Carga

		Coefic	iente K
Peça	Quant.	Unitário	Total
Entrada normal	1.00	0.50	0.50
Curva 90°	2.00	0.40	0.80
Saida de canalização	1.00	1.00	1,00
		omatório	2.30

c) Perda de Carga total

-	_								
h	=	perda	de	carda	total	$= h_{in} +$	h#		0.147 a

Cota do terreno	:	158.000 m
Cota Entrada Floculador	:	162.450 m
Altura do NA no floculador	:	4,820 m
Altura do NA na calha Parshall	7	0.314 m
Altura calha Parshall	-	0.570 m
Borda Livre	:	0.300 m
Queda Livre na saida	;	0.200 m
Cota fundo Calha Parshall	:	163.580 m
Cota Fundo saida calha Parshall		163.380 m
Cota NA na calha Parshall		163.894 m
Cota NA na calha Parshall entrada floculoador		162.967 m
Cota Topo da estrutura (Calha Pashail)		164.450 m

158.00 m

Tabela de resultados hidráulicos - Drenagem ETA

Logradouro	Tramo	PV Inicial	PV Final	Ext. (114)	Area Total (m²)	T¢ (min)	Temp. v. (min)	(cm/h)	Vazão (iVs)	Vazão Conc. (L/s)	Ст. ल (वा)	CT.[(m)	Cfm (m)	Cfj (m)	Declividad e (m/m)	Manning's n	Djämetro	Material	h/o(%);	þ [m]	Velocidade (m/s)	Recob. m (m)	Recob.] (m)	Obs.
Saida RAP 11DD m³	T-12	BL-1	PV-1	4.943	1330.893	10	D.0\$	12.075	31.24		1.51.7	154.24	150.85	150.8	0.01	0.01	250 mm	PVC	44.2	0.111	1.49	0.6	3.19	
	T-4	PV-1	PV-2	15.506	1330.893	10.054	0.17	12.063	33.21		154.24	152.96	150.8	150.65	0.D1	0.01	250 mm	PVC	44.2	0.11	1.49	3.19	2.07	06 0.15
	1'-8	PV-2	PV-3	18.927	1330.893	10.228	0.14	12.024	163.71		152.95	152	150.5	150.31	0.0).	0.01	4DD mm	PVC	56.1	0.224	2.26	2.07	1.29	
	T-9	PV-3	PV-4	24.393	1821.162	1D.368	0,18	11.994	175.06		152	153.98	1\$0.31	150.06	0.01	0.01	400 mm	PVČ	58.5	0.7,34	2.29	1.29	3.52	
	T-7	PV-4	PV-5	24.59	1821.162	10.545	0.18	11.955	174.92		153.98	153.85	150.06	149.82	D.01	D.01	400 mm	PVÇ	58.5	0.234	2.29	3.\$2	3.63	
į	T-5	PV-S	PV-6	15.462	3068.D54	1D.725	0.11	11.917	203.67		153.85	153.46	149.82	149.66	0.01	0.01	400 mm	PVC	64.8	0.259	2.37	3.63	3.4	TO 2.01
]	T-6	PV-6	PŲ-7	15,172	3068.054	10.834	0.11	11.893	203.53		153.46	151.26	149.66	149.51	D.01	0.01	400 mm	PVC	64.7	0.259	2.36	3.4	0.7	10, 2.01
	T-19	PV-7	2V-8	14.553	306B.054	10.942	0.06	11.87	203.39		151.26	148	147.5	146.9	0.041	0.0)	400 mm	PVC	42.2	0.169	2.02	3.35	D.64	
ļ	T-13	PV-8	PV-9	19.036	3547.59	11.002	D.16	11.857	214.37		148	147.84	146.9	145.7	0.01	0.013	500 mm	Concrete	53.3	D.26G		0.6	0.56	·· -
	T-14	9√-9	PV-10	9.468	3547.59	11.161	D.08	11.823	214.13		147.84	147.66	146.7	146.6	0.011	0.013	500 mm	Concrete	5.3	0.265	2.03	0.64	0.56	
	T-15	PV-10	PV-11	7.585	3794.201	11.239	0,06	11.8D7	219.68		147.66	147,4	146.6	146.5	D.013	0.013	500 mm	Concrete	50.5	0.252	2.21	0.56	0.22	
	T-2D	PV-11	PV-12	11.838	4127.602	11.296	0.06	21.795	227.23		147.4	146.72	146.5	146	D.042	0.013	500 mm	Concrete	37.1	D.186	2.43	U.4	0.22	Descida de água em
	T-29	PV-12	Saida-1	9,409	7049.679	1).354	0.02	11.783	474.B7		146.72	144.2	145	144	٠		-	Cancrete	-	-				degraus 4
	T-3	RAP1100	PV-2	4.145		L'				132.5	151.7	152.96	150.7	15D.66	0.01	0.01	400 pmm	₽V€	49.4	0.198	2.14	D.B	1.91	DG 0.16
	· ·T-2	BL-2	PV-3	4.417	490.269	10	0.06	12.075	11.51		151.7	152	150.9	150.86	0.01	0.01	200 mm	PVC	35.5	0.071	1.15	D.6	0.94	00 0.55
	T-24	BL-3	PV-5	8.859	1246.892	10	0.04	12.075	29.27		155.15	153.85	154.35	153.05	D.147	0.01	200 mm	PVC	28.6	0.057	3.95	0.6	D.6	FQ 3.23
	Y-23	BL-4	PV-8	4.115	479.536	10	0.02	12.075	11.26		148	148	147.5	146.9	0.141	0.01	2DD mm	PVC	18	0.036	2.94	0.3	0.9	
	T-3D	31-8	PV-11	8.341	333,401	10	0.04	12.075	7.83		149.5	147.4	148.7	146.5	D.257	0.01	200 mm	PVĆ	12.9	0.026	3.3	0.6	0.7	
Saida REL-02	T-21	RELD2	PV-15	15.347	-					39.6	156.7	155.48	135.9	154.68	0.08	0.01	200 mm	PVC	39.1	0.078	3.44	0.6	0.6	
Salua Netruz	Y-28	PV-15	PV-16	11.507		 			39.16		155.48	153.07	154.6R	152.27	0.208	0.01	200 mm	PVC	30.5	0.061	4,84	Q.6	0.6	TQ 1.27
	1-27	PV-16	PV-17	9.645		1	 		39.16		153.07	149.93	151	149.13	0.191	0.01	200 mm	PVC	31.2	0.062	4.7	1 87	D.5	TQ 1.23
	T-26	PV-17	PV-12	11.455	·	+	† · · · · · ·	-	39.16		149.93	146,72	147.9	146	0.164	0.01	200 mm	PVC	32.4	0.065	4.45	1.83	0.52	
														T			Ţ	<u> </u>				<u> </u>		
By-Pass Decantador	T-10	Dec	PV-18	3.769	ļ	<u> </u>	ļ. .		<u> </u>	141.6	158	158	157	156.96	0.01	0.01	400 mm	PVC	51.4	0.205	2.18	0.6 D.64	0.64	
	T-1	PV-18	PV-19	9.588	0	0.028	0.07	12.075	141.65		158	158	155.96	156.87	0.01	0.01	400 mm	PVC	51.4	0.205	2.18	D.64	0.73	Descida de água em
	T-33	PV-19	PV-20	9.05	<u>'</u>			0	141.65		158	154	156.87	153	<u> </u>	<u> </u>	-	1.				<u> </u>		degraus 1
	T-17	PV-20	PV-21	19.362	319.725	10	0.1	12.075	149.15	↓	154	154	153	152.5	0.026	0.01	400 mm	PVC	40.5	0.162	3.13 3.18	1.1	1.1	
	7.18	PV-21	PV-22	7.547	538.648	10.104	0.04	12.052	154.27		154	154	152.5	152.3 148.7	D.f)26	D.01	400 num	Cancrete		0.154	3.16	1 1 1	13	Descida de água em
	T-35	PV-22	PV-23	5.733	,		<u> </u>	0	154.26		154	149.5	152.3		1 .		400 mm	PVČ	44.1	0.176	2.89	D.4	0.56	degraus 2
l	T-16	PV-23	PV-24	7.926	538.648	10.154	0.05	12.041	154.26	 	149.5	149.5	148.7	148.54	0.02	0.01		PVC	30.5	0.122	4.75	0.56	0.36	DG 0.25
1	T-25	PV-24	PV-27	3.574	538.648	10.199	0.01	12.031	154.25		149.5	148.65	148.54	148.25	0,079	0.01	400 mm	PVC	0.47	0.122	2.08	0.6	0.73	20,0,00
	T-11	Tanque Cont	PV-19	13.379	 	- 	1		1	120	158	158	157	156.87	0.01	0.01	400 mm	PVL	0.47		2.00	0.5	V-7.5	1
Saida ETA Existente	T-31	PV-25	PV-26	11.958	739.592	10	0.05	12.075	17.36	1	156	152.77	155.2	151.97	0.271	0.01	200 mm	PVC	18.9	850.0	4.21	D.6	0.6	
	T-32	PV-26	PV-27	13.057	1015.6DI	10.047	0.05	12.064	23.82		152.77	148.65	151.97	148	0.303	0.03	200 mm	₽V¢	7,1.5	0.043	4,8	0,6	D.45	<u></u>
	T-22	PV-27	PV-12	15.053	-	-			208.91		148.65	146.72	148	146	-			Concrete	1 -	-		-		Descida de água em degraus 3

6.2. ESTUDO DOS TRANSIENTES HIDRÁULICOS

6.2.1. INTRODUÇÃO

O estudo dos transientes hidráulicos de SAA Jaguaribe-CE foi elaborado visando dimensionar o sistema de proteção das linhas de recalque AAT-02, e verificar o funcionamento da adutora de água bruta existente. Também visou determinar as cargas de pressão dinâmica essenciais para projetar as ancoragens necessárias para as tubulações.

Os transientes hidráulicos nas linhas de recalque foram avaliados para o caso de parada do bombeamento nas estações elevatórias, quer seja devido a operação normal do sistema em função da possível limitação do número de horas diárias de bombeamento, quer seja por interrupção do fornecimento de energia elétrica aos motores, considerando-se inicialmente que os sistemas estariam funcionando sem qualquer equipamento de proteção contra o golpe de ariete.

Posteriormente à verificação da condição de funcionamento das linhas de recalque sem equipamento de proteção, passou-se à análise e otimização dos respectivos sistemas de proteção, levando-se em conta os fatores de operacionalidade, adequação aos transientes hidráuticos calculados e, sobretudo, minimização dos custos de construção e operação dos sistemas.

A análise dos transientes hidráulicos e dimensionamento dos sistemas de proteção se deram através do emprego de um software denominado HAMMER. Este programa foi desenvolvido pelo Environmental Hydraulics Group (GENIVAR) e atualmente suportado pela BENTLEY. O programa foi desenvolvido com o objetivo de determinar o comportamento do transitório hidráulico em tubulações de recalque de água utilizando-se para isso o Método das Características, e o uso das equações características para a modelagem das condições de contorno de equipamentos normalmente encontrados nos sistemas hidráulicos.

Os estudos realizados tiveram a seguinte sequência:

- Primeiramente foi analisada a linha de recalque em regime permanente para se ajustar os parâmetros relativos ao tipo de bomba, rotação e rotor aplicável a cada caso;
- Em seguida, foram simulados os transientes hidráulicos sem as proteções anti-golpe para se avaliar a compatibilidade e classe de pressão do tubo empregado;
- Depois foi simulado o sistema adotando-se as proteções necessárias, primando pela economicidade e eficiência da proteção.

M

6.2.2. CONCEITUAÇÃO TEÓRICA

O fenômeno dos transientes hidráulicos, em sua forma comum mais conhecida como golpe de aríete, devido ao fato de ouvir-se barulhos de marteladas dentro da tubulação, é freqüentemente abordado nos tratados e manuais de hidráulica como um dos aspectos mais complexos da hidráulica aplicada. Transiente hidráulico, como o próprio nome já diz, são fenômenos transitórios de curta duração, mas que poderão ser de grande intensidade e até levar à ruína uma instalação hidromecânica.

LENCASTRE¹ define transitório hidráulico como a passagem de um regime permanente para outro regime permanente, onde o primeiro é o regime de escoamento cinético do fluido (bombeamento ou adução gravitária) e o segundo é o regime estático ou de velocidade nula.

Segundo SILVESTRE², denomina-se golpe de ariete à variação da pressão acima e abaixo do valor de funcionamento normal dos condutos forçados, em conseqüência das mudanças das velocidades da água, decorrentes de manobras dos registros de regulagem das vazões.

A melhor forma para conceituação de fenômeno transitório (surto de pressão, golpe de ariete, transiente hidráulico ou qualquer outra forma nominativa) é considerá-lo como qualquer perturbação no escoamento nominal de um fluido em uma tubulação onde os valores dos parâmetros P/γ e $v^2/2g$ da equação de Bernoulli são alterados.

O transitório hidráulico normalmente ocorre em situações não normais de operação, tais como:

- Desligamento não programado de um conjunto eletro-bomba por falta de energia elétrica;
- Interrupção do escoamento por fechamento rápido de registro ou válvula automática;
- Alívio súbito de carga de uma turbina hidráulica (ou a vapor) provocando seu disparo.

Um fenômeno transitório tanto pode levar ao surgimento de uma onda de sobrepressão, como gerar uma onda de subpressão até chegar próxima ao vácuo absoluto e à possível separação da coluna líquida (ruptura da veia) por vaporização do líquido.

A condição de parada brusca dos motores, resultantes da interrupção do bombeamento por falha no fornecimento de energia aos motores, constitui-se na condição mais crítica de funcionamento do sistema, quando são provocadas as maiores sobrepressões e subpressões nas linhas de recalque.

¹ LENCASTRE, Armando, Hidráulica Geral, Lisboa, Portugal, 1983.

² SILVESTRE, P. Hidráulica Geral - 1ª edição. Rio de Janeiro, 1979.

Para isso se deve projetar equipamentos de proteção contra o golpe de aríete que de ser fejtos através de simulação computacional do funcionamento das instalações em situações tanto em regime permanente como em condições transientes para se avaliar as envoltórias de sobrepressão e subpressão que possam afetar as instalações.

Se o perfil da tubulação, em função das cotas do terreno natural, for relativamente próximo da linha piezométrica, a súbita desaceleração da coluna de água pode causar uma queda de pressão interna a valores inferiores à da pressão atmosférica (subpressão).

A vaporização ou mesmo a separação de coluna pode ocorrer em pontos altos ao longo do perfil da tubulação de recalque. Quando a onda de pressão retorna aos valores positivos, a coluna de água se reunirá dando vez à ocorrência de sobrepressões do golpe de ariete, podendo colocar em risco a estabilidade da tubulação ou dos equipamentos conectados.

As sobrepressões podem acarretar, nos casos críticos, a ruptura de certas tubulações que não apresentam coeficientes de segurança suficientes.

A norma da ABNT NB-591, de dezembro de 1991, utilizada para o cálculo dos transientes hidráulicos, recomenda que as pressões máximas devida ao golpe de ariete ocorrentes em qualquer seção da adutora, devem ser iguais ou inferiores as pressões de serviço admissíveis adotadas para as tubulações, conexões, acessórios e equipamentos previstos em toda a instalação em face dos planos de cargas piezométricas de regime permanente e estáticas.

As tubulações de PVC DEFoFo apresentam uma pressão de serviço nominal de 100 mca, independente do diâmetro utilizado. Para os tubos de ferro fundido, a pressão de serviço varia de acordo com o diâmetro conforme apresentado no **Quadro 7.2**. A reserva de segurança dos tubos de ferro fundido permite um aumento de 20% da pressão de serviço admissível para sobrepressões transitórias.

Quadro 0.1: Pressão de Serviço dos Tubos de Ferro Fundido

Diàmetro	- Tubo Cl	asse K7	Tubo Cl	asse K9
(mm)	PSA (mca)	PMS (mca)	PSA (mca)	PMS (mea)
100	500	600	640	770
150	500	600	640	770
200	500	600	620	740

- Diâmetro	Tubo C	lasse K7	_ Tubo C	asse K9
(mm) = :	PSA (mca)	PMS (mca)	PSA (mca)	PMS (mca)
250	410	490	540	650
300	360	430	490	590
350	320	380	450	540
400	300	360	420	510
450	290	350	400	480
500	280	340	380	460
600	260	310	360	430
700	240	290	340	410
800	230	280	320	380
900	230	280	310	370
1000	220	260	300	360
1200	210	250	280	340

LEGENDA: PSA - pressão de serviço admissível; PMS - pressão máxima de serviço.

A onda de subpressão é a primeira que ocorre na tubulação a partir do instante em que se interrompe o fornecimento de energia ao conjunto moto-bomba. Nesse momento, a pressão começa então a reduzir. Se a altura estática for suficientemente pequena, esta redução a superará, iniciando-se a pressão negativa, cujo crescimento, segundo Rosich³, não é linear como nas pressões positivas, mas sim exponencial e que, por esse motivo, o vácuo que se produz em uma parada de bombas é sempre um valor discreto.

Cabe ressaltar que de acordo com a teoria apresentada por Lencastre, a descrição de aplicações práticas de Tomaz e os limites de funcionamento apresentados em catálogos de fabricantes de tubulações, a subpressão pode atingir determinados valores que mesmo assim a integridade física do material utilizado e a continuidade da veia líquida são preservadas.

Para as tubulações de ferro dúctil, a junta garante a estanqueidade face ao exterior, mesmo em caso de vácuo parcial. Para as tubulações de PVC DEFoFo, o valor admissível para a subpressão é da ordem de -8.0 mca.

No entanto, prezando pela segurança, para o estudo aqui realizado utilizaremos a pressão minima de -4,0 mca (CAGECE) como limite para adoção de equipamentos de proteção na tubulação. Este valor equivale aproximadamente a 40% do ponto máximo de tensão de vapor da água.

3

³ ROSICH, E.M., El Golpe de Ariete en Impulsiones, Bellisco, Madrid, 1987.

O método mais comum de limitar-se a subpressão é alimentando-se a linha de recalque con-signa tão logo a pressão interna tenda a cair. Isto é conseguido através do emprego de uma série de equipamentos de proteção.

6.2.3. BASE METODOLÓGICA

Para análise dos transientes hidráulicos nas adutoras do presente projeto foi empregado o programa HAMMER, desenvolvido pelo Environmental Hydraulics Group (GENIVAR) e atualmente suportado pela BENTLEY.

A formulação matemática da maioria dos programas de análise de transientes hidráulicos normalmente adota o Método das Características, apresentado por Chaudhry⁴ e pode ser vista também em Sousa⁵ dentre outros autores consagrados.

As equações básicas utilizadas na análise de transitórios hidráulicos podem ser matematicamente expressas pela equação dinâmica do escoamento dada pela 2ª Lei de Newton e pela equação da Contínuidade. O sistema dado por essas equações diferenciais pode ser resolvido pelo Método das Características permitindo-se avaliar os valores da vazão **Q** e da carga piezométrica H ao longo da tubulação dada pela abscissa **x** e do tempo t.

6.2.4. EQUAÇÃO DO MOVIMENTO

A equação do movimento é expressa por:

$$\frac{\partial Q}{\partial t} + gA \frac{\partial H}{\partial x} + \frac{f}{2DA} Q |Q| = 0$$
 Eq. 1

Onde o primeiro termo do membro esquerdo da equação representa a variação da aceleração do movimento, o segundo representa a variação do gradiente de pressão e o terceiro representa os efeitos decorrentes da dissipação de energia.

6.2.5. EQUAÇÃO DA CONTINUIDADE

A equação da continuidade é apresentada a seguir:

$$\frac{\partial H}{\partial t} + \frac{c^2}{gA} \frac{\partial Q}{\partial x} = 0$$
 Eq. 2

例

⁴ CHAUDRY, M.H., Applied Hydraulic Transients, Van Nostrand Reinhold Co. Publ., New York, 1989.

⁵ SOUZA, P. A; MARTINS, J. R. S.; FADIGA JR., F. M., Métodos Computacionais Aplicados à Engenharia Hidrádi Centro Tecnológico de Hidráulica e Recursos Hídricos, EPUSP, São Paulo, 1991.

Onde o primeiro termo do membro esquerdo da equação representa a variação de fluxo de massa e o segurido termo a variação de massa. O parâmetro c é a celeridade de propagação das ondas de pressão e de velocidade durante o transitório hidráulico conhecida comumente apenas como celeridade da onda.

A introdução de aparelhos e equipamentos de proteção na modelagem matemática do transitório se faz por aplicação de condições de contorno específicas para cada caso e tipo de equipamento.

6.2.6. CELERIDADE DA ONDA

A celeridade da onda é função das características da tubulação (elasticidade, deformação, espessura da parede da tubulação, diâmetro, grau de fixação da tubulação, etc.) e das características do fluido (compressibilidade, presença de ar, etc.). A equação de Allievi a seguir é normalmente empregada nos programas de cálculo de transientes.

$$c = \frac{9900}{\sqrt{48,3 + k\frac{D}{e}}}$$

q. 3

 $k = \frac{10^{10}}{E}$

Eq. 4

onde:

c - celeridade da onda (m/s);

D - diâmetro da tubulação (m);

e - espessura da tubulação (m);

k - coeficiente que leva em conta os módulos de elasticidade do material da tubulação.

- para tubos de aço, k = 0,5;
- para tubos de ferro fundido, k = 1,0;
- para tubos de cimento-amianto, k = 4,4;
- para tubos de concreto, k = 5,0;
- para tubos de PVC rígido, k = 18,0.

1

6.2.7. PERÍODO DA TUBULAÇÃO

Azevedo Netto⁶ define período de tubulação, como o tempo que a onda de sobrepressão leva para ir e voltar de uma extremidade a outra da tubulação, isto é, o tempo de ir da bomba ao reservatório e voltar, denotada por:

$$\mu = \frac{2L}{c}$$
 Eq. 5

onde:

μ - período da tubulação (s);

L - comprimento da tubulação (m);

c - celeridade da onda (m/s).

O tempo de fechamento da válvula ou registro à montante do conjunto moto-bomba é um importante fator para o golpe de aríete. Se o fechamento for muito rápido, o registro ficará completamente fechado antes da atuação da onda de depressão. Por outro lado, se o registro for fechado lentamente, haverá tempo para atuar a onda de depressão antes da obturação completa.

A partir daí é possível definir e classificar as manobras de fechamento de registros.

6.2.8. MANOBRAS DE FECHAMENTO

As manobras de fechamento de válvulas e registros, como dito anteriormente, dependem do período da tubulação e se classificam em: instantâneas, rápidas e lentas.

6.2.8.1. Manobras Instantâneas

As manobras são ditas instantâneas quando o tempo de fechamento do registro é zero, isto é, quando há o fechamento do registro, a vazão se anula imediatamente.

Na prática isso é fisicamente impossível, pois, por mais rapidamente que se feche o registro, sempre teremos um tempo diferente de zero. No entanto, é importante saber a respeito do fechamento instantâneo do registro porque é através dele que se irá deduzir a fórmula para o cálculo da sobrepressão máxima.

⁶ AZEVEDO NETTO, J. M., ALVAREZ, G. A. Manual de Hidráulica Vol. 1, 6ª edição. São Paulo, 1973.

6.2.8.2. Manobras Rápidas

Teremos uma manobra rápida quando o tempo de fechamento do registro for inferior ao período da tubulação. Assim, teremos o fechamento completo do registro antes que a onda refletida volte ao ponto de origem.

Nestas condições, na seção onde se executa a manobra, não se nota qualquer efeito da redução da depressão, resultante do aparecimento das ondas refletidas.

Quando o fechamento é rápido, observa-se a sobrepressão máxima na extremidade da tubulação, que pode ser calculada pela fórmula:

$$\Delta h = \frac{cV}{g}$$
 Eq. 6

onde:

Δh - sobrepressão máxima (mca);

c - celeridade da onda (m/s);

V - velocidade de escoamento do fluido (m/s);

g - aceleração da gravidade (m/s2).

6.2.8.3. Manobra Lenta

Teremos uma manobra lenta sempre que o tempo de fechamento do registro for maior que o período da tubulação.

Várias fórmulas têm sido deduzidas para o caso de manobras lentas, em que a variação da seção seja linear com o tempo. Uma fórmula aproximada muito utilizada é a de Michaud, que considera a proporcionalidade da velocidade com o período da tubulação e o tempo de manobra:

$$\Delta h = \frac{2LV}{gT}$$

Eq. 7

onde:

Δh - sobrepressão máxima (mca);

L - comprimento da tubulação (m);

V - velocidade de escoamento do fluido (m/s);

h

JOTA BARROS PROJE Cláudio José Queiroz B Eng^o Civil - CREA 134395

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/

TTEM	TABELA	CÓDIGO		UNID.	(DIANT)	PRECO UNIT.	PREÇO UNIT. C/ BDI		PERCENTUAL
1.0			INSTALAÇÃO DA OBRA		EMES			1 674 574-04 147.403,84	0,73%
1.1			CANTEIRO DE OBRAS EXECUÇÃO DE ESCRITÓRIO EM CANTEIRO DE OBRA EM					147.403,64	0,73%
	CYNIADY	93207	CHAPA DE MADEIRA COMPENSADA, NÃO INCLUSO	M2	12,00	1.001,64	1.238,43	14.861,16	0,07%
1.1.1	SINAPI	93207	MOBILIÁRIO E EQUIPAMENTOS. AF_02/2016	1-12	12,00	1.001,01	1.250, 10		.,
			EXECUÇÃO DE ALMOXARIFADO EM CANTEIRO DE OBRA EM		1				
1.1.2	SINAPI	93208	CHAPA DE MADEIRA COMPENSADA, INCLUSO PRATELEIRAS.	M2	60,00	840,38	1.039,05	62.343,00	0,31%
	<u> </u>		AF 02/2016			<u> </u>			
		•	EXECUÇÃO DE SANITÁRIO E VESTIÁRIO EM CANTEIRO DE		70.50	040.46	1 105 50	22 211 60	0.1104
1.1.3	SINAPI	93212	OBRA EM CHAPA DE MADEIRA COMPENSADA, NÃO INCLUSO	M2	20,00	918,46	1.135,58	22.711,60	0,11%
			MOBILIÁRIO: AF 02/2016 EXECUÇÃO DE REFEITÓRIO EM CANTEIRO DE OBRA EM CHAPA		 				
1.1.4	SINAPI	93210	DE MADEIRA COMPENSADA, NÃO INCLUSO MOBILIÁRIO E	M2	60,00	550,30	680,39	40.823,40	0,20%
1.1.4	SINAFI	55210	EQUIPAMENTOS. AF 02/2016		00,00	100,00	1		
1.1.5	COMPOSIÇÃO	C1937	PLACAS PADRÃO DE OBRA	M2	36,00	149,73	185 ,1 3	6.664,68	0,03%
1.2	-	•	ADMINISTRAÇÃO LOCAL					1.527.167,20	7,61%
	SINAPI	93565	ENGENHEIRO CIVIL DE OBRA JUNIOR COM ENCARGOS	MES	24,00	18.406,77	22.758,13	546.195,12	2,72%
1.2.1	SINAMI	93303	COMPLEMENTARES	,,	2.,00		ļ	 	<u></u>
1.2.2	SINAPI	93572	ENCARREGADO GERAL DE OBRAS COM ENCARGOS	MES	48,00	4.915,78	6.077,87	291.737,76	1,45%
	L	93563	COMPLEMENTARES ALMOXARIFE COM ENCARGOS COMPLEMENTARES	MES	48,00	3.213,64	3.973,34	190.720,32	0,95%
1,2,3	SINAPI		APONTADOR OU APROPRIADOR COM ENCARGOS					<u> </u>	Ī
1.2.4	SINAPI	93564	COMPLEMENTARES	MES	48,00	3.326,92	4.113,40	197.443,20	0,98%
		100331	TÉCNICO EM SEGURANÇA DO TRABALHO COM ENCARGOS	MES	20,00	4.530,10	5.601,02	112.020,40	0,56%
1.2.5	SINAPI	100321	COMPLEMENTARES			<u> </u>		_i	
1.2.6	SINAPI	101460	VIGIA DIURNO COM ENCARGOS COMPLEMENTARES	MES	48,00	3.185,50	3.938,55	189.050,40	0,94%
				200		· 《张 · 李·朱东西和1		379.848,48	
£ 52.0	"我是"我	ida (C. Prince)	CAPTAÇÃO DE AGUA BRUTA - SERVIÇOS DEMOLIÇÃO DE CONSTRUÇÃO EXISTENTE	***	**************************************	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	5.017,80	
2.1	-			 	†				1
2.1.1	SINAPI	97626	DEMOLIÇÃO DE PILARES E VIGAS EM CONCRETO ARMADO, DE	M3	1,50	488,08	603,46	905,19	0,00%
2,1,1	SINAFI	1 3,020	FORMA MANUAL, SEM REAPROVEITAMENTO. AF_12/2017		-,				
		07672	DEMOLIÇÃO DE ALVENARIA DE BLOCO FURADO, DE FORMA	М3	4,86	45,36	56,08	272,55	CALCAD CO
2.1.2	SINAPI	97622	MANUAL, SEM REAPROVEITAMENTO. AF 12/2017	1,113	4,00	40,00	30,00	2,2,55	Jarris 10,00 ion
			REMOÇÃO DE TELHAS, DE FIBROCIMENTO, METÁLICA E			2.05	3.65	1 42.26	
2.1.3	SINAPI	97647	CERÂMICA, DE FORMA MANUAL, SEM REAPROVEITAMENTO.	M2	11,88	2,95	3,65	43,36	0,00%
		<u> </u>	AF_12/2017			<u> </u>		1 1	╵ ⋗ ╏┈┇ ╏╾┇

V-7-7

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

ITEM	TABELA	CÓDIGO	SERVIÇOS.	UNED.	QUANT	PREÇO UNIT.	PRECO UNIT: C/BDI	PRECO	PERCENTUAL
2.1.4	SINAPI		DEMOLIÇÃO DE PILARES E VIGAS EM CONCRETO ARMADO, DE FORMA MECANIZADA COM MARTELETE, SEM REAPROVEITAMENTO. AF 12/2017	M3	0,38	245,33	303,33	115,27	0,00%
2.1.5	SINAPI	97645	REMOÇÃO DE JANELAS, DE FORMA MANUAL, SEM REAPROVEITAMENTO. AF_12/2017	M2	2,10	27,83	34,41	72,26	0,00%
2.1.6	SINAPI	100974	CARGA, MANOBRA E DESCARGA DE SOLOS E MATERIAIS GRANULARES EM CAMINHÃO BASCULANTE 10 M³ - CARGA COM PÁ CARREGADEIRA (CAÇAMBA DE 1,7 A 2,8 M³ / 128 HP) E DESCARGA LIVRE (UNIDADE: M3). AF 07/2020		18,62	6,76	8,36	155,66	0,00%
2.1.7	SINAPI	95875	TRANSPORTE COM CAMINHÃO BASCULANTE DE 10 M³, EM VIA URBANA PAVIMENTADA, DMT ATÉ 30 KM (UNIDADE: M3XKM). AF_07/2020		93,10	1,94	2,40	223,44	0,00%
2.1.8	COMPOSIÇÃO	C3462	DESMONTAGEM DE TUBOS, CONEXÕES E PÇS ESPECIAIS, RESERVATÓRIO ELEVADO	ŲN	1,00	2.612,48	3.230,07	3.230,07	0,02%
2.2			URBANIZAÇÃO	'	ſ <u> </u>			14.318,25	0,07%
2.2.1	COMPOSIÇÃO	C2873	LOCAÇÃO DA OBRA COM AUXÍLIO TOPOGRÁFICO (ÁREA ATÉ 5000 M2)	M2	210,00	0,25	0,31	65,10	0,00%
2.2.2	SINAPI	98525	LIMPEZA MECANIZADA DE CAMADA VEGETAL, VEGETAÇÃO E PEQUENAS ÁRVORES (DIÂMETRO DE TRONCO MENOR QUE 0,20 M), COM TRATOR DE ESTEIRAS.AF_05/2018	M2	210,00	0,33	0,41	86,10	0,00%
2.2.3	SINAPI	92393	EXECUÇÃO DE PAVIMENTO EM PISO INTERTRAVADO, COM BLOCO SEXTAVADO DE 25 X 25 CM, ESPESSURA 6 CM. AF_12/2015	M2	67,40	43,16	53,36	3.596,46	0,02%
2.2.4	SINAPI	94273	ASSENTAMENTO DE GUIA (MEIO-FIO) EM TRECHO RETO, CONFECCIONADA EM CONCRETO PRÉ-FABRICADO, DIMENSÕES 100X15X13X30 CM (COMPRIMENTO X BASE INFERIOR X BASE SUPERIOR X ALTURA), PARA VIAS URBANAS (USO VIÁRIO). AF 06/2016	М	25,20	37,66	46,56	1.173,31	0,01%
2.2.5	SINAP!	101197	CERCA COM MOURÕES DE CONCRETO, SEÇÃO "T" PONTA INCLINADA, 10X10 CM, ESPAÇAMENTO DE 2,5 M, CRAVADOS 0,5 M, COM 11 FIOS DE ARAME FARPADO Nº 14 - FORNECIMENTO E INSTALAÇÃO. AF_05/2020	М	18,62	97,58	120,65		0.01%
2.2.6	COMPOSIÇÃO	C2904	PORTÃO DE TUBO DE AÇO GALVANIZADO DE 2" (4X2)m, INCL PILARES DE SUSTENTAÇÃO	UN	1,00	4.347,35	5.375,06	5.375, 7 5.38	/0,13%
2.2.7	COMPOSIÇÃO	C2903	PORTÃO DE TUBO DE AÇO GALVANIZADO DE 2" (1X2)m, INCL. PILARES DE SUSTENTAÇÃO	UN	1,00	1.436,20	1.775,72	1.775	

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

ITEM	TABELA	CÓD)(GO	SERVICOS 14	UNID.	QUANT.	PRECO UNIT	PRECO UNIT: C/ BDI	u Piki≅60Mu	PERCENTUAL
2.3		<u> </u>	MOVIMENTO DE TERRA					26.648,31	0,13%
2.3.1	SINAPI	96523	ESCAVAÇÃO MANUAL PARA BLOCO DE COROAMENTO OU SAPATA (INCLUINDO ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF 06/2017	М3	4,49	80,20	99,16	445,23	0,00%
2.3.2	SINAPI	96520	ESCAVAÇÃO MECANIZADA PARA BLOCO DE COROAMENTO OU SAPATA COM RETROESCAVADEIRA (SEM ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF_06/2017	М3	40,45	84,28	104,20	4.214,89	0,02%
2,3,3	SINAPI	93368	REATERRO MECANIZADO DE VALA COM ESCAVADEIRA HIDRÁULICA (CAPACIDADE DA CAÇAMBA: 0,8 M³ / POTÊNCIA: 111 HP), LARGURA ATÉ 1,5 M, PROFUNDIDADE DE 1,5 A 3,0 M, COM SOLO DE 1ª CATEGORIA EM LOCAIS COM BAIXO	M3	11,00	14,04	17,36	190,96	0,00%
2.3.4	SINAPÍ	93368	REATERRO MECANIZADO DE VALA COM ESCAVADEIRA HIDRÁULICA (CAPACIDADE DA CAÇAMBA: 0,8 M³ / POTÊNCIA: 111 HP), LARGURA ATÉ 1,5 M, PROFUNDIDADE DE 1,5 A 3,0 M, COM SOLO DE 1º CATEGORIA EM LOCAIS COM BAIXO	М3	19,62	14,04	17,36	340,60	0,00%
2.3.5	SINAPI	100974	CARGA, MANOBRA E DESCARGA DE SOLOS E MATERIAIS GRANULARES EM CAMINHÃO BASCULANTE 10 M³ - CARGA COM PÁ CARREGADEIRA (CAÇAMBA DE 1,7 A 2,8 M³ / 128 HP) E DESCARGA LIVRE (UNIDADE: M3). AF_07/2020	M3	10,30	6,76	8,36	86,11	0,00%
2.3.6	SINAPI	95875	TRANSPORTE COM CAMINHÃO BASCULANTE DE 10 M³, EM VIA URBANA PAVIMENTADA, DMT ATÉ 30 KM (UNIDADE: M3XKM). AF_07/2020	M3XKM	11,44	1,94	2,40	27,46	0,00%
2.3.7	SINAPI	95875	TRANSPORTE COM CAMINHÃO BASCULANTE DE 10 M³, EM VIA URBANA PAVIMENTADA, DMT ATÉ 30 KM (UNIDADE: M3XKM). AF 07/2020		11,44	1,94	2,40	27,46	0,00%
2.3.8	SINAPI	101230	ESCAVAÇÃO VERTICAL A CÉU ABERTO, ÉM OBRAS DE INFRAESTRUTURA, INCLUINDO CARGA, DESCARGA E TRANSPORTE, EM SOLO DE 1ª CATEGORIA COM ESCAVADEIRA HIDRÁULICA (CAÇAMBA: 0,8 M³ / 111 HP), FROTA DE 3 CAMINHÕES BASCULANTES DE 14 M³, DMT ATÉ 1 KM E VELOCIDADE MÉDIA14KM/H. AF 05/2020	' мз	360,00	8,83	10,92	3.931,20	0,02%

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/

ITEM	/TABELA	CÓDIGO	SERVICOS.	UNID.	QUANT.	PREÇO UNIT.	PREÇO UNIT. C/ BDI	PRECO	PERCENTUAL
2.3.9	SINAPÎ	100975	CARGA, MANOBRA E DESCARGA DE SOLOS E MATERIAIS GRANULARES EM CAMINHÃO BASCULANTE 14 M³ - CARGA COM PÁ CARREGADEIRA (CAÇAMBA DE 1,7 A 2,8 M³ / 128 HP) E DESCARGA LIVRE (UNIDADE: M3). AF_07/2020	М3	360,00	6,91	8,54	3.074,40	0,02%
2.3.10	SINAPI	95876	TRANSPORTE COM CAMINHÃO BASCULANTE DE 14 M³, EM VIA URBANA PAVIMENTADA, DMT ATÉ 30 KM (UNIDADE: M3XKM). AF_07/2020	мзхкм	5.400,00	1,72	2,13	11.502,00	0,06%
2.3.11	SINAPI	96386	EXECUÇÃO E COMPACTAÇÃO DE ATERRO COM SOLO PREDOMINANTEMENTE ARENOSO - EXCLUSIVE SOLO, ESCAVAÇÃO, CARGA E TRANSPORTE. AF_11/2019	: МЗ	360,00	6,31	7,80	2.808,00	0,01%
2.4	н	-	CONCRETO			!		30.862,11	0,15%
2.4.1	SINAPI	94962	CONCRETO MAGRO PARA LASTRO, TRAÇO 1:4,5:4,5 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 400 L. AF_05/2021	М3	0,25	309,66	382,86	95,72	0,00%
2.4.2	SINAPI	94966	CONCRETO FCK = 30MPA, TRAÇO 1:2,1:2,5 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 400 L. AF 05/2021	М3	9,12	393,96	487,09	4.442,26	0,02%
2.4.3	SINAPI	93378	REATERRO MECANIZADO DE VALA COM RETROESCAVADEIRA (CAPACIDADE DA CAÇAMBA DA RETRO: 0,26 M³ / POTÊNCIA: 88 HP), LARGURA ATÉ 0,8 M, PROFUNDIDADE ATÉ 1,5 M, COM SOLO DE 1ª CATEGORIA EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_04/2016	M3	9,12	20,27	25,06	228,55	0,00%
2.4.4	SINAPI	92423	MONTAGEM E DESMONTAGEM DE FÔRMA DE PILARES RETANGULARES E ESTRUTURAS SIMILARES, PÉ-DIREITO SIMPLES, EM CHAPA DE MADEIRA COMPENSADA RESINADA, 6 UTILIZAÇÕES. AF 09/2020	M2	85,84	59,31	73,33	6.294,65	0,03%
2.4.5	SINAPI	92775	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-60 DE 5,0 MM - MONTAGEM, AF 12/2015	KG	29,00	20,69	25,58	741,82	0,00%
2,4.6	SINAPI	92776	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 6,3 MM - MONTAGEM, AF 12/2015	KG	10,00	19,78	24,46	244,60 sur	0,0%

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

ттем	TABELA	conteo!	SERVICOS SERVICOS	UNID.	QUANT.	PREÇO UNIT.	PRECO UNIT C/ BDI	PRECO	PERCENTUAL
2,4.7	SINAPI	92777	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 8,0 MM - MONTAGEM. AF_12/2015	KG	150,00	18,70	23,12	3.468,00	0,02%
2,4.8	SINAPI	92778	ARMAÇÃO DE PÎLAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 10,0 MM - MONTAGEM. AF. 12/2015	KG	287,00	16,74	20,70	5.940,90	0,03%
2.4.9	SINAPI	92779	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 12,5 MM - MONTAGEM. AF. 12/2015	КG	399,00	14,13	17,47	6.970,53	0,03%
2.4.10	SINAPI	92780	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 16,0 MM - MONTAGEM. AF 12/2015	KG	107,00	13,42	16,59	1.775,13	0,01%
2.4.11	SINAPI	98557	IMPERMEABILIZAÇÃO DE SUPERFÍCIE COM EMULSÃO ASFÁLTICA, 2 DEMÃOS AF 06/2018	M2	15,91	33,55	41,48	659,95	0,00%
2.5	-	-	ALVENARIA DE ELEVAÇÃO					186.846,32	0,93%
2.5.1	SINAPI	87495	ALVENARIA DE VEDAÇÃO DE BLOCOS CERÂMICOS FURADOS NA HORIZONTAL DE 9X19X19CM (ESPESSURA 9CM) DE PAREDES COM ÁREA LÍQUIDA MENOR QUE 6M2 SEM VÃOS E ARGAMASSA DE ASSENTAMENTO COM PREPARO EM BETONEIRA. AF 06/2014	M2	41,65	80,15	99,10	4.127,52	0,02%
2.5.2	COMPOSIÇÃO	C3723	ALVENARIA DE PEDRA ARGAMASSADA (TRAÇO 1:6) C/AGREGADOS ADQUIRIDOS	МЗ	360,00	403,88	499,36	179.769,60	0,90%
2.5.3	SINAPI	92539	TRAMA DE MADEIRA COMPOSTA POR RIPAS, CAIBROS E TERÇAS PARA TELHADOS DE ATÉ 2 ÁGUAS PARA TELHA DE ENCAIXE DE CERÂMICA OU DE CONCRETO, INCLUSO TRANSPORTE VERTICAL, AF 07/2019	M2	23,04	61,09	75,53	1.740,21	0,01%
2.5.4	SINAPI	94440	TELHAMENTO COM TELHA CERÂMICA DE ENCAIXE, TIPO FRANCESA, COM ATÉ 2 ÁGUAS, INCLUSO TRANSPORTE VERTICAL. AF 07/2019	M2	23,04	27,35	33,82	779,21	se Ce ^O , Domice
2.5.5	COMPOSIÇÃO	C0387	BEIRA E BICA EM TELHA COLONIAL	М	4,80	13,09	16,18	77,66 8	0,00%
2.5.6	COMPOSIÇÃO	C3721	VIGA DE MADEIRA MACIÇA 10"X 4"	M	2,00	142,40	176,06	352,1	0,00% /*
2.6		<u> </u>	COBERTA/LAJE		<u> </u>		<u></u>	de 18	

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/ DESONERAÇÃO

THEN /	TABELA	ε όρτ ς α	SERVICOS NALL	UNID.	QUANT.	PRECO UNIT.	PRECOUNIT: C/ BDI	PREÇO	PERCENTUAL.
2.6.1	SINAPI	101750	PISO CIMENTADO, TRAÇO 1:3 (CIMENTO E AREIA), ACABAMENTO RÚSTICO, ESPESSURA 4,0 CM, PREPARO MECÂNICO DA ARGAMASSA. AF_09/2020	M2	13,44	40,27	49,79	669,18	0,00%
2.7	-		REVESTIMENTO					6.778,02	0,03%
2.7.1	SINAPI	87879	CHAPISCO APLICADO EM ALVENARIAS E ESTRUTURAS DE CONCRETO INTERNAS, COM COLHER DE PEDREIRO. ARGAMASSA TRAÇO 1:3 COM PREPARO EM BETONEIRA 400L. AF 06/2014	M2	95,90	3,44	4,25	407,58	0,00%
2.7.2	SINAPI	87775	EMBOÇO OU MASSA ÚNICA EM ARGAMASSA TRAÇO 1:2:8, PREPARO MECÂNICO COM BETONEIRA 400 L, APLICADA MANUALMENTE EM PANOS DE FACHADA COM PRESENÇA DE VÃOS, ESPESSURA DE 25 MM, AF 06/2014	M2	95,90	48,08	59,45	5.701,26	0,03%
2.7.3	SINAPI	101750	PISO CIMENTADO, TRAÇO 1:3 (CIMENTO E AREIA), ACABAMENTO RÚSTICO, ESPESSURA 4,0 CM, PREPARO MECÂNICO DA ARGAMASSA. AF 09/2020	M2	13,44	40,27	49,79	669,18	0,00%
2,8	_	-	ESQUADRIAS					5.449,93	0,03%
2.8.1	SINAPI	100701	PORTA DE FERRO, DE ABRIR, TIPO GRADE COM CHAPA, COM GUARNIÇÕES. AF_12/2019	M2	3,03	562,07	694,94	2.105,67	0,01%
2.8.2	SINAPI	100701	PORTA DE FERRO, DE ABRIR, TIPO GRADE COM CHAPA, COM GUARNIÇÕES. AF_12/2019	M2	4,20	562,07	694,94	2.918,75	0,01%
2.8.3	SINAPI	100726	PINTURA COM TINTA ALQUÍDICA DE FUNDO E ACABAMENTO (ESMALTE SINTÉTICO GRAFITE) APLICADA A ROLO OU PINCEL SOBRE SUPERFÍCIES METÁLICAS (EXCETO PERFIL) EXECUTADO EM OBRA (POR DEMÃO). AF_01/2020	M2	14,45	22,10	27,32	394,77	0,00%
2.8.4	SINAPI	9875	TUBO PVC, SOLDAVEL, DN 50 MM, PARA AGUA FRIA (NBR- 5648)	М	1,68	15,99	18,30	30,74	0,00%
2.9		-	PINTURA					2.959,54	0,01%
2.9.1	SINAPI	88495	APLICAÇÃO E LIXAMENTO DE MASSA LÁTEX EM PAREDES, UMA DEMÃO. AF_06/2014	M2	95,90	8,91	11,02	1.056,82	0,01%
2.9.2	SINAPI	88489	APLICAÇÃO MANUAL DE PINTURA COM TINTA LÁTEX ACRÍLICA EM PAREDES, DUAS DEMÃOS. AF_06/2014	M2	95,90	13,07	16,16	1.549,74	0,01%
2.9.3	COMPOSIÇÃO	C2899	PINTURA LOGOTIPO CAGECE - PROJETO PADRÃO	UN	1,00	285,49	352,98	352,98	ce Company
2,10			DISPOSITIVO DE PROTEÇÃO E ACESSO	ļ. <u></u>				18/250,14	0,03
2.10.1	COMPOSIÇÃO	C3464	INSTALAÇÃO E FORNECIMENTO DE MONOVIA: TRILHO,TROLLEY / TALHA MANUAL 2,0 T	UN	1,00	11.482,08	14.196,44	14.196,44	0,0746

160

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/

ITEM :	MALESA I.	cóptgo	SERVICOS MALE TO SERVICOS	UNID.	QUANT.	PREÇO UNIT.	PREÇO UNIT. C/ BDI	PREÇO	PERCENTUAL.
2.10.2	SINAPI		GUARDA-CORPO DE AÇO GALVANIZADO DE 1,10M, MONTANTES TUBULARES DE 1.1/4" ESPAÇADOS DE 1,20M, TRAVESSA SUPERIOR DE 1.1/2", GRADIL FORMADO POR TUBOS HORIZONTAIS DE 1" E VERTICAIS DE 3/4", FIXADO COM CHUMBADOR MECÂNICO. AF_04/2019_P	М	5,00	658,96	814,74	4.073,70	0,02%
2.11			MONTAGEM / INSTALAÇÃO ELETROMECÂNICA					82.028,88	0,41%
2.11.1	COMPOSIÇÃO	C3421	INSTALAÇÃO ELETROMECÂNICA DE CONJUNTO MOTO-BOMBA DE 100 À 200 CV	UN	2,00	8.017,40	9.912,71	19.825,42	0,10%
2.11.2	COMPOSIÇÃO	C4868	MONTAGEM DE TUBOS, CONEXÕES E PÇS, ELEVATÓRIA C VAZÃO DE 90,01 A 200L/S	UN	1,00	50.310,14	62.203,46	62.203,46	0,31%
#4€100¥ 3.1	W . 4. 1		CAPTAÇÃO DE ÁGUA BRUTA : MATERIAIS TUBOS; CONEXÕES E EQUIPAMENTOS			Par The Control		1,031,718,42 1,020,959,77	5,14% 5,09%
3.1.1	COTAÇÃO	COT.1	BOMBA CENTRIFUGA MOTOR ELETRICO TRIFASICO, Potência = 125 cv; VAZÃO = 348,80 m3/h; HM = 52,35 mca. Modelo: BOMBA KING IRR 150X125X405 ME/1 ACOPLADA TRIFÁSICA 220/380/440/660 60 HZ P=125CV 1750RPM ou SIMILAR.	UN	2,00	243.945,00	279,195,05	558.390,10	2,78%

And the september of th

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TTEM	TABELA	CÓDIGO	SERVICOS (Page 1)	UNID.	QUANT:	PREÇO UNIT.	PRECO UNIT. C/ BDI	PRECO	PERCENTUAL
3.1.2	COTAÇÃO	COT.7	CENTRO DE COMANDO DE MOTORES, COMPOSTO DE 2 CHAVES TIPO SOFT STARTER, PARA MOTORES DE 125CV Composto de: Quadro de comando 1,90 x 60 x 60 metálico; Disjuntor de entrada/alimentação termo magnético conforme potência do motor; Chave fusível Ultra rápido de acordo com a potência; Fusíveis ultrarápidos de acordo com a potência do motor; Softstart SSW07WEG ou similar com amperagem de acordo com a potência do motor; Contactores WEG ou similar CMW com bobina de 220v com contato auxiliar de 220v; Transformador/isolador de acordo com a potência 380va/220vca; Voltímetro digital de 0 a 500v; Botão de emergência com bloco de contato; Chaves seletora de comando 3P com 2 blocos de contato NA e 2 NF; Minicontactores auxiliares com 2 NA e 2NF bobina de 220v; Sinaleiras led vermelhas de 220v; Sinaleiras led verdes de 220v; Réguas de borne sindau de 6mm; Botões de comando liga/desliga; e contendo os seguintes Acessórios: Trilhos / canaletas / espaguetti; Cabo de cobre flexível 1,5mm2 preto (50 metros por quadro); Cabo de cobre flexível 2,5mm2 vermelho (50 metros por quadro); Terminais tipo pino 2,5 m (pequeno e grande) (30 a 40 unidades por quadro); Terminais tipo gardo 2,5 m (pequeno e grande) (30 a 40 unidades por quadro); Plaqueta Acrílica (manual / automático) ;	UN	1,00	80,800,00	92.475,60	92.475,60 92.475,60 C.P.L	0,46% Ce Competito Remainente de la constante
3.1.3	COTAÇÃO	14072	REDUÇÃO EXCÊNTRICA C/ FLANGES DN 250 x 150 PN10	UN	2,00	3.200,00	3,662,40	7.527,00	1 0,0470
3.1.4	COTAÇÃO	14077	REDUÇÃO EXCÊNTRICA C/ FLANGES DN 400 x 250 PN10	UN	2,00	2.699,68	3.089,78	6.179,56	0,03%
3.1.5	COTAÇÃO	I4528	TUBO FoFo C/ FLANGES DN 400 PN10 - L=3000	UN	2,00	8. <u>526,</u> 67	9.758,77	19.517,54	0,10%
3.1.6	COTAÇÃO	14013	JUNTA DE DESMONTAGEM TRAVADA AXIALMENTE PN16 DN400	บท	2,00	10.101,00	11.560,59	23.121,18	0,12%
3.1.7	COTAÇÃO	18708	VALVULA BORBOLETA FLANGEADA DN 400 (ENTRE FLANGES)	UN	2,00	17.100,00	19.570,95	39.141,90	0,20%
3.1.8	COTAÇÃO	15754	VALVULA RETENÇÃO DN 400 PN16 FECH. RÁPIDO (CLASAR)	UN	2,00	19.524,00	22,345,22	44.690,44	0,22%
3.1.9	COTAÇÃO	I3972	TUBO FoFo C/ FLANGES DN 400 PN10 - L= 250	UN	2,00	4.500,00	5.150,25	10.300,50	0,95%
3.1.10	COTAÇÃO	I3431	CURVA FoFo 90 FF PARA ÁGUA DN 400 PN10	UN	2,00	9.686,96	11,086,73	22.173,46	0/11%
3.1.11	COTAÇÃO	I3972	TUBO FoFo C/ FLANGES DN 400 PN10 - L= 250	UN	1,00	4.500,00	5.150,25	5.150,25	Ø,03%

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/ DESONERAÇÃO

ITEM	TABELA /	codico	SERVIÇOS 4	UNTO	QUANT.	PREÇO UNIT.	PREÇO UNIT. C/ BDI	PREÇO	PERCENTUAL
3.1.12	COTAÇÃO	13670	TE FoFo FF DN 400 x 400 PN10	UN	2,00	7.941,02	9.088,50	18.177,00	0,09%
3.1.13	COTAÇÃO	14524	TUBO FoFo C/ FLANGES DN 400 PN10 - L=1000	UN	1,00	5.502,33	6.297,42	6.297,42	0,03%
3.1.14	ÇOTAÇÃO	I4526	TUBO FoFo C/ FLANGES DN 400 PN10 - L=2000	UN	1,00	7.017 _: 30	8.031,30	8.031,30	0,04%
3.1.15	COTAÇÃO	18708	VALVULA BORBOLETA FLANGEADA DN 400 (ENTRE FLANGES)	UN	1,00	17.100,00	19.570,95	19.570,95	0,10%
3.1.16	COTAÇÃO	18706	VALVULA BORBOLETA FLANGEADA DN 300 (ENTRE FLANGES)	ŊŊ	1,00	13:800,00	15.794,10	15.794,10	0,08%
3.1.17	COTAÇÃO	I3669	TE F0F0 FF DN 400 x 300 PN10	UN	1,00	9.800,00	11.216,10	11.216,10	0,06%
3.1.18	COTAÇÃO	I3 <u>9</u> 72	TUBO FoFo C/ FLANGES DN 400 PN10 - L= 250	UN	1,00	4.500,00	5.150,25	5.150,25	0,03%
3.1. 1 9	COTAÇÃO	13482	CURVA DE PÉ 90 FF PARA ÁGUA DN 400 PN10	ÜN	2,00	10.100,00	11.559,45	23.118,90	0,12%
3.1.20	COTAÇÃO	I4097	REDUÇÃO FoFo FF DN 400 x 300 PN10	UN	2,00	5.500,00	6.294,75	12.589,50	0,06%
3.1.21	COTAÇÃO	[4012	JUNTA DE DESMONTAGEM TRAVADA AXIALMENTE PN16 DN300	UN	1,00	4.700,00	5.379,15	5.379,15	0,03%
3,1,22	COTAÇÃO	I4503	TUBO FoFo C/ FLANGES DN 300 PN10 - L=1500	UN	1,00	4.863,73	5.566,54	5.566,54	0,03%
3,1.23	COTAÇÃO	187631	VÁLVULA REDUTORA DE PRESSÃO (VRP) DN 100 PN10 CÂMARA SIMPLES FLANGEADA	UN	1,00	12.132,00	13.885,07	13.885,07	0,07%
3.1.24	COTAÇÃO	COT.37	FILTRO EM Y FLANGEADO COM TELA INOX PN 10 DN 150	UN	1,00	8.080,20	9.247,79	9.247,79	0,05%
3.1.25	COTAÇÃO	12957	MACROMEDIDOR TIPO WOLTMAN PN 10/16 FLANGEADO COM MEDIDOR TOTALIZADOR DN 150MM COM VAZÃO ATÉ 500M3/H	UN	1,00	19.079,10	21.836,03	21.836,03	0,11%
3.1.26	COTAÇÃO	139721	TUBO FoFo C/ FLANGES DN 400 PN10 - L= 200	UN	1,00	2.112,66	2,417,94	2.417,94	0,01%
3.1.27	COTAÇÃO	14692	TUBO FoFo C/FLANGE E PONTA DN 300 PN10 - L=3000	UN	1,00	5.312,29	6.079,92	6.079,92	0,03%
3.1.28	COTAÇÃO	I4096	REDUÇÃO FoFo FF DN 400 x 250 PN10	UN	1,00	2,410,90	2.759,28	2,759,28	0,01%
3.1.29	COTAÇÃO	14088	REDUÇÕES 250 X 150	UN	1,00	1.398,73	1.600,85	1.600,85	0,01%
3.1.30	COTAÇÃO	15730	VENTOSA TRIPLICE FUNÇÃO/FLANGE DN 100 PN25	UN	1,00	3.299,56	3,776,35	3.776,35	0,02%
3.2	-		ACESSÓRIOS					10.758,65	0,05%
3.2.1	COTAÇÃO	16439	ARRUELA BORRACHA P/ FLANGES DN 400 PN10 P/ ÁGUA	UN	17,00	153,72	175,93	2.990,81	0,01%
3.2.2	COTAÇÃO	I6437	ARRUELA BORRACHA P/ FLANGES DN 300 PN10 P/ ÁGUA	UN	6,00	93,95	107,53	645,18	0,00%
3.2.3	COTAÇÃO	I6436	ARRUELA BORRACHA P/ FLANGES DN 250 PN10 P/ ÁGUA] UN	4,00	59,95	68,61	274,44	0,00%
3.2.4	COTAÇÃO	I6429	ARRUELA BORRACHA P/ FLANGES DN 150 PN10 P/ ÁGUA	UN	2,00	31,78	36,37	72,74	0,00%
3,2.5	COTAÇÃO	16428	ARRUELA BORRACHA P/ FLANGES DN 100 PN10 P/ ÁGUA	UN	1,00	21,25	24,32	24,32	0,00%
3.2.6	COTAÇÃO	I4243	PARAFUSO C/ PORCAS PARA FLANGES DN 24 x 100	UN	180,00	16,54	18,93	3.407,40	0,02%
3.2.7	COTAÇÃO	I4242	PARAFUSO C/ PORCAS PARA FLANGES DN 20 x 90	UN	100,00	28,80	32,96	3.296,00	8 52 7 h
3.2.8	COTAÇÃO	I4241	PARAFUSO C/ PORCAS PARA FLANGES DN 16 x 80	UN	8,00	5,22	5,97	47,76	NY 0,00% 00%
								$oxed{J}$	8 /1 1 3
4.1			ESTAÇÃO DE TRATAMENTO DE ÁGUA - SERVIÇOS TERRAPLENAGEM - SERVIÇOS		Mar. Wilde	Ma. (1) W 19852 / A.	Jan Property Co	499.087,62	

.€S

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

ITEM	TABELA	cópico	SERVIÇOS	UNTD/	QUANT.	PREÇO UNIT.	PREÇO UNIA C/ BD1	PRECO	PERCENTUAL
4.1.1	SINAPI	98525	LIMPEZA MECANIZADA DE CAMADA VEGETAL, VEGETAÇÃO E PEQUENAS ÁRVORES (DIÂMETRO DE TRONCO MENOR QUE 0,20 M), COM TRATOR DE ESTEIRAS.AF_05/2018	М2	1.600,00	0,33	0,41	656,00	0,00%
4.1.2	COMPOSIÇÃO	C2873	LOCAÇÃO DA OBRA COM AUXÍLIO TOPOGRÁFICO (ÁREA ATÉ 5000 M2)	M2	1.600,00	0,25	0,31	496,00	0,00%
4.1.3	SINAPI	1005//	REGULARIZAÇÃO E COMPACTAÇÃO DE SUBLEITO DE SOLO PREDOMINANTEMENTE ARENOSO. AF 11/2019	M2	1.600,00	0,89	1,10	1.760,00	0,01%
4.1.4	SINAPI	101230	ESCAVAÇÃO VERTICAL A CÉU ABERTO, EM OBRAS DE INFRAESTRUTURA, INCLUINDO CARGA, DESCARGA E TRANSPORTE, EM SOLO DE 1ª CATEGORIA COM ESCAVADEIRA HIDRÁULICA (CAÇAMBA: 0,8 M³ / 111 HP), FROTA DE 3 CAMINHÕES BASCULANTES DE 14 M³, DMT ATÉ 1 KM E VELOCIDADE MÉDIA14KM/H. AF 05/2020	М3	1.829,66	8,83	10,92	19.979,89	0,10%
4.1.5	SINAPI	100975	CARGA, MANOBRA E DESCARGA DE SOLOS E MATERIAIS GRANULARES EM CAMINHÃO BASCULANTE 14 M³ - CARGA COM PÁ CARREGADEIRA (CAÇAMBA DE 1,7 A 2,8 M³ / 128 HP) E DESCARGA LIVRE (UNIDADE: M3). AF_07/2020	М3	9.506,47	6,91	8,54	81.185,25	0,40%
4.1.6	SINAPI	95876	TRANSPORTE COM CAMINHÃO BASCULANTE DE 14 M³, EM VIA URBANA PAVIMENTADA, DMT ATÉ 30 KM (UNIDADE: M3XKM). AF 07/2020		142.597,05	1,72	2,13	303.731,72	1,51%
4.1.7	SINAPI	96386	EXECUÇÃO E COMPACTAÇÃO DE ATERRO COM SOLO PREDOMINANTEMENTE ARENOSO - EXCLUSIVE SOLO, ESCAVAÇÃO, CARGA E TRANSPORTE. AF 11/2019	М3	9.506,47	6,31	7,80	74.150,47	0,37%
4.1.8	COMPOSIÇÃO	C3218	EXPURGO DE JAZIDA	М3	840,14	2,94	3,64	3.058,11	0,02%
4.1.9	COMPOSIÇÃO	C2840	INDENIZAÇÃO DE JAZIDA	M3	9.506,47	1,20	1,48	14.069,58	0,07%
4.2 4.2.1	SINAPI	94966	DRENAGEM E ÚRBANIZAÇÃO - SERVIÇOS CONCRETO FCK = 30MPA, TRAÇO 1:2,1:2,5 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 400 L. AF_05/2021	M3	106,16	393,96	487,09	364.806,07 51.709,47	1,82% 0,26%
4.2.2	SINAPI	93378	REATERRO MECANIZADO DE VALA COM RETROESCAVADEIRA (CAPACIDADE DA CAÇAMBA DA RETRO: 0,26 M³ / POTÊNCIA: 88 HP), LARGURA ATÉ 0,8 M, PROFUNDIDADE ATÉ 1,5 M, COM SOLO DE 1ª CATEGORIA EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_04/2016	М3	106,16	20,27	25,06	2.660,3 paper	0,01%

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/

TIEM	TAEELA	CÓDIGO		UNID.	QUANT.	PREÇO UNIT.	PREÇO UNIT. C/ BDI	PREÇO	PERCENTUAL
4.2.3	SINAPI	92423	MONTAGEM E DESMONTAGEM DE FÔRMA DE PILARES RETANGULARES E ESTRUTURAS SIMILARES, PÉ-DIREITO SIMPLES, EM CHAPA DE MADEIRA COMPENSADA RESINADA, 6 UTILIZAÇÕES. AF 09/2020	M2	367,64	59,31	73,33	26.959,04	0,13%
4.2.4	SINAPI	92778	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 10,0 MM - MONTAGEM. AF 12/2015	KG	582,18	16,74	20,70	12.051,13	0,06%
4.2.5	SINAPI	92777	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 8,0 MM - MONTAGEM. AF 12/2015	KG	1.504,38	18,70	23,12	34.781,27	0,17%
4.2.6	SINAPI	92776	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 6,3 MM - MONTAGEM, AF 12/2015	KG	55,74	19,78	24,46	1.363,40	0,01%
4.2.7	COMPOSIÇÃO	C3066	DESCIDA D'ÁGUA DE CONCRETO ARMADO TIPO U	М	42,40	145,02	179,30	7.602,32	0,04%
4.2.8	SINAPI	97950	CAIXA PARA BOCA DE LOBO DUPLA RETANGULAR, EM ALVENARIA COM TIJOLOS CERÂMICOS MACIÇOS, DIMENSÕES INTERNAS: 0.6X2,2X1,2 M. AF_12/2020	UN	6,00	2.632,79	3.255,18	19.531,08	0,10%
4.2.9	SINAPI	97933	CAIXA COM GRELHA SIMPLES RETANGULAR, EM CONCRETO PRÉ-MOLDADO, DIMENSÕES INTERNAS: 0,6X1,0X1,0 M. AF 12/2020	UN	27,00	911,18	1.126,58	30.417,66	0,15%
4.2.10	COMPOSIÇÃO	C3110	SAIDA D'AGUA C/ DISSIPADOR DE ENERGIA	ŲN	5,00	203,17	2 51,20	1.256,00	0,01%
4.2.11	SINAPI	90105	ESCAVAÇÃO MECANIZADA DE VALA COM PROFUNDIDADE ATÉ 1,5 M (MÉDIA MONTANTE E JUSANTE/UMA COMPOSIÇÃO POR TRECHO), RETROESCAV. (0,26 M3), LARGURA MENOR QUE 0,8 M, EM SOLO DE 1A CATEGORIA, LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_02/2021	в мз	63,02	6,85	8,47	533,78	0,00%
4.2.12	SINAPI	102327	ESCAVAÇÃO MECANIZADA DE VALA COM PROF. ATÉ 1,5 M (MÉDIA MONTANTE E JUSANTE/UMA COMPOSIÇÃO POR TRECHO), RETROESCAV. (0,26 M3), LARG. DE 0,8 M A 1,5 M, EM SOLO DE 2A CATEGORIA, EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_02/2021	М3	63,01	7,29	9,01	567,72	0.00%

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

ITEM	TABELA	cónico	SERVICOS	UNID.	QUANT.	PREÇO UNIT.	PREÇO UNIT. C/ BDI	PRECO	PERCENTUAL
4.2.13	SINAPI	90108	ESCAVAÇÃO MECANIZADA DE VALA COM PROFUNDIDADE MAIOR QUE 1,5 M ATÉ 3,0 M (MÉDIA MONTANTE E JUSANTE/UMA COMPOSIÇÃO POR TRECHO), RETROESCAV (0,26 M3), LARGURA DE 0,8 M A 1,5 M, EM SOLO DE 1A CATEGORIA, LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF 02/2021	М3	567,13	5,24	6,48	3.675,00	0,02%
4.2.14	·· SINAPI	102285	ESCAVAÇÃO MECANIZADA DE VALA COM PROF. MAIOR QUE 3,0 M ATÉ 4,5 M (MÉDIA MONTANTE E JUSANTE/UMA COMPOSIÇÃO POR TRECHO), ESCAVADEIRA (0,8 M3), LARG, MENOR QUE 1,5 M, EM SOLO MOLE, EM LOCAIS COM ALTO NÍVEL DE INTERFERÊNCIA. AF_02/2021	M3	567,13	9,13	11,29	6.402,90	0,03%
4.2.15	SINAPI	93378	REATERRO MECANIZADO DE VALA COM RETROESCAVADEIRA (CAPACIDADE DA CAÇAMBA DA RETRO: 0,26 M³ / POTÊNCIA: 88 HP), LARGURA ATÉ 0,8 M, PROFUNDIDADE ATÉ 1,5 M, COM SOLO DE 1º CATEGORIA EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_04/2016	МЗ	1.223,23	20,27	25,06	30.654,14	0,15%
4.2.16	SINAPI	100981	CARGA, MANOBRA E DESCARGA DE ENTULHO EM CAMINHÃO BASCULANTE 6 M³ - CARGA COM ESCAVADEIRA HIDRÁULICA (CAÇAMBA DE 0,80 M³ / 111 HP) E DESCARGA LIVRE (UNIDADE: M3). AF 07/2020	М3	37,05	7,28	9,00	333,45	0,00%
4.2.17	SINAPI	97913	TRANSPORTE COM CAMINHÃO BASCULANTE DE 6 M³, EM VIA	мзхкм	37,05	2,55	3,15	116,71	0,00%
4.2.18	SINAPI	97135	ASSENTAMENTO DE TUBO DE PVC DEFOFO OU PRFV OU RPVC PARA REDE DE ÁGUA, DN 200 MM, JUNTA ELÁSTICA INTEGRADA, INSTALADO EM LOCAL COM NÍVEL BAIXO DE INTERFERÊNCIAS (NÃO INCLUI FORNECIMENTO). AF_11/2017	M	114,18	4,01	4,96	566,33	0,00%
4.2.19	SINAPI	97136	ASSENTAMENTO DE TUBO DE PVC DEFOFO OU PRFV OU RPVC PARA REDE DE ÁGUA, DN 250 MM, JUNTA ELÁSTICA INTEGRADA, INSTALADO EM LOCAL COM NÍVEL BAIXO DE INTERFERÊNCIAS (NÃO INCLUI FORNECIMENTO). AF_11/2017	M	20,45	4,92	6,08	124,34	the Colo Similar

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/ DESONERAÇÃO

ITEM	TABELA	cépico	SERVIÇOS L	UNID.	QUANT.	PREÇO UNIT.	PRECO UNIT. C/ BDI	PRECO	PERCENTUAL
4.2.20	SINAPI	97139	ASSENTAMENTO DE TUBO DE PVC DEFOFO OU PRFV OU RPVC PARA REDE DE ÁGUA, DN 400 MM, JUNTA ELÁSTICA INTEGRADA, INSTALADO EM LOCAL COM NÍVEL BAIXO DE INTERFERÊNCIAS (NÃO INCLUI FORNECIMENTO). AF_11/2017	M	182,71	7,68	9,50	1.735,75	0,01%
4.2.21	SINAPI	97140	ASSENTAMENTO DE TUBO DE PVC DEFOFO OU PRFV OU RPVC PARA REDE DE ÁGUA, DN 500 MM, JUNTA ELÁSTICA INTEGRADA, INSTALADO EM LOCAL COM NÍVEL BAIXO DE INTERFERÊNCIAS (NÃO INCLUI FORNECIMENTO). AF_11/2017	М	47,97	9,54	11,80	566,05	0,00%
4.2.22	SINAPI	95240	LASTRO DE CONCRETO MAGRO, APLICADO EM PISOS, LAJES SOBRE SOLO OU RADIERS, ESPESSURA DE 3 CM. AF_07/2016	M2	126,46	14,91	18,43	2.330,66	0,01%
4.2.23	SINAPI	92393	EXECUÇÃO DE PAVIMENTO EM PISO INTERTRAVADO, COM BLOCO SEXTAVADO DE 25 X 25 CM, ESPESSURA 6 CM. AF 12/2015	M2	1.002,50	43,16	53,36	53.493,40	0,27%
4.2.24	SINAPI	94273	ASSENTAMENTO DE GUIA (MEIO-FIO) EM TRECHO RETO, CONFECCIONADA EM CONCRETO PRÉ-FABRICADO, DIMENSÕES 100X15X13X30 CM (COMPRIMENTO X BASE INFERIOR X BASE SUPERIOR X ALTURA), PARA VIAS URBANAS (USO VIÁRIO), AF 06/2016	M	284,34	37,66	46,56	13.238,87	0,07%
4.2.25	SINAPI	102075	ESCADA EM CONCRETO ARMADO MOLDADO IN LOCO, FCK 20 MPA, COM 2 LANCES EM "L" E LAJE PLANA, FÔRMA EM CHAPA DE MADEIRA COMPENSADA RESINADA. AF_11/2020	М3	6,86	4.643,91	5.741,73	39.388,27	0,20%
4.2.26	SINAPI	99839	GUARDA-CORPO DE AÇO GALVANIZADO DE 1,10M DE ALTURA, MONTANTES TUBULARES DE 1.1/2/EISPAÇADOS DE 1,20M, TRAVESSA SUPERIOR DE 2/EGRADIL FORMADO POR BARRAS CHATAS EM FERRO DE 32X4,8MM, FIXADO COM CHUMBADOR MECÂNICO. AF 04/2019 P	М	36,00	511,05	631,86	22.746,96	0,11%
4.3	-	-	TANQUE DE CONTATO E FILTROS - SERVIÇOS					1.142.306,64	5,69%
4.3.1	COMPOSIÇÃO	C2873	LOCAÇÃO DA OBRA COM AUXÍLIO TOPOGRÁFICO (ÁREA ATÉ 5000 M2)	M2	283,80	0,25	0,31	87,98	E CeU, Com
4.3.2	SINAPI	96523	ESCAVAÇÃO MANUAL PARA BLOCO DE COROAMENTO OU SAPATA (INCLUINDO ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF 06/2017	М3	3,25	80,20	99,16	322,27,39,00	0,00%

سيت

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/ DESONERAÇÃO

ITEM	TABELA	CÓDIGÓ	SERVICOS PAR 10 194	UNID.	QUANT.	PREÇO UNIT.	PREÇO UNIT. C/ BDI	PRECO	PERCENTUAL
4.3.3	SINAPI	96520	ESCAVAÇÃO MECANIZADA PARA BLOCO DE COROAMENTO OU SAPATA COM RETROESCAVADEIRA (SEM ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF_06/2017	М3	108,16	84,28	104,20	11.270,27	0,06%
4 .3.4	SINAPI	100981	CARGA, MANOBRA E DESCARGA DE ENTULHO EM CAMINHÃO BASCULANTE 6 M³ - CARGA COM ESCAVADEIRA HIDRÁULICA (CAÇAMBA DE 0,80 M³ / 111 HP) E DESCARGA LIVRE (UNIDADE: M3). AF 07/2020	М3	15,00	7,28	9,00	135,00	0,00%
4.3.5	SINAPI	93378	REATERRO MECANIZADO DE VALA COM RETROESCAVADEIRA (CAPACIDADE DA CAÇAMBA DA RETRO: 0,26 M³ / POTÊNCIA: 88 HP), LARGURA ATÉ 0,8 M, PROFUNDIDADE ATÉ 1,5 M, COM SOLO DE 1º CATEGORIA EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_04/2016	М3	9,02	20,27	25,06	226,04	0,00%
4.3.6	SINAPI	97913	TRANSPORTE COM CAMINHÃO BASCULANTE DE 6 M³, EM VIA URBANA EM REVESTIMENTO PRIMÁRIO (UNIDADE: M3XKM). AF 07/2020	мзхкм	15,00	2,55	3,15	47,25	0,00%
4.3.7	SINAPI	94968	CONCRETO MAGRO PARA LASTRO, TRAÇO 1:4,5:4,5 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 600 L. AF_05/2021	М3	7,20	306,78	379,30	2.730,96	0,01%
4.3.8	SINAPI	94972	CONCRETO FCK = 30MPA, TRAÇO 1:2,1:2,5 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 600 L. AF 05/2021	М3	175,86	388,37	480,18	84.444,45	0,42%
4.3.9	SINAPI	93378	REATERRO MECANIZADO DE VALA COM RETROESCAVADEIRA (CAPACIDADE DA CAÇAMBA DA RETRO: 0,26 M³ / POTÊNCIA: 88 HP), LARGURA ATÉ 0,8 M, PROFUNDIDADE ATÉ 1,5 M, COM SOLO DE 1ª CATEGORIA EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_04/2016	M3	175,86	20,27	25,06	4.407,05	0,02%
4.3.10	SINAPI	92423	MONTAGEM E DESMONTAGEM DE FÔRMA DE PILARES RETANGULARES E ESTRUTURAS SIMILARES, PÉ-DIREITO SIMPLES, EM CHAPA DE MADEIRA COMPENSADA RESINADA, 6 UTILIZAÇÕES. AF 09/2020	M2	1.153,59	59,31	73,33	84.592,75	0,42%
4.3.11	SINAPI	92775	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-60 DE 5,0 MM - MONTAGEM. AF 12/2015	KG	29,00	20,69	25,58	741 892 100 g	0,000

A. 1.00

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

TABELAS UTILIZADAS: SINAPI OUT/2021 S/

ITEM	TABELA	cóptco	SERVICOS NO SERVICOS	UNID.	QUANT.	PREÇO UNIT	PREÇO UNIT. C/ BDI	PRECO	PERCENTUAL
4.3.12	SINAPI	92776	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 6,3 MM - MONTAGEM. AF_12/2015	KG	5,00	19,78	24,46	122,30	0,00%
4.3.13	SINAPI	92777	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 8,0 MM - MONTAGEM. AF 12/2015	KG	73,00	18,70	23,12	1.687,76	0,01%
4.3.14	SINAPI	92778	ARMAÇÃO DE PÎLAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 10,0 MM - IMONTAGEM. AF 12/2015	KG	510,00	16,74	20,70	10.557,00	0,05%
4.3.15	SINAPI	92779	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 12,5 MM - MONTAGEM. AF 12/2015	KG	8.043,04	14,13	17,47	140.511,91	0,70%
4.3.16	SINAPI	92780	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 16,0 MM - MONTAGEM. AF 12/2015	KG	17.683,75	13,42	16,59	293.373,41	1,46%
4.3.17	SINAPI	92781	ARMAÇÃO DE PILAR OU VIGA DE UMA ESTRUTURA CONVENCIONAL DE CONCRETO ARMADO EM UMA EDIFICAÇÃO TÉRREA OU SOBRADO UTILIZANDO AÇO CA-50 DE 20,0 MM - MONTAGEM. AF 12/2015	KG	10.564,82	15,07	18,63	196.822,60	0,98%
4.3.18	SINAPI	98547	IMPERMEABILIZAÇÃO DE SUPERFÍCIE COM MANTA ASFÁLTICA, DUAS CAMADAS, INCLUSIVE APLICAÇÃO DE PRIMER ASFÁLTICO, E=3MM E E=4MM. AF_06/2018	M2	1.029,97	172,84	213,70	220.104,59	1,10%
4.3.19	SINAPI	98557	IMPERMEABILIZAÇÃO DE SUPERFÍCIE COM EMULSÃO ASFÁLTICA, 2 DEMÃOS AF 06/2018	M2	113,63	33,55	41,48	4.713,37	0,02%
4.3.20	SINAPI	88489	APLICAÇÃO MANUAL DE PINTURA COM TINTA LÁTEX ACRÍLICA EM PAREDES, DUAS DEMÃOS. AF 06/2014	M2	210,38	13,07	16,16	3.399,74	0,02%
4.3.21	COMPOSIÇÃO	C2899	PINTURA LOGOTIPO CAGECE - PROJETO PADRÃO	UN	4,00	285,49	352,98	1.411,92	0,01%
4.3.22	SINAPI	99837	GUARDA-CORPO DE AÇO GALVANIZADO DE 1,10M, MONTANTES TUBULARES DE 1.1/4" ESPAÇADOS DE 1,20M, TRAVESSA SUPERIOR DE 1.1/2", GRADIL FORMADO POR TUBOS HORIZONTAIS DE 1" E VERTICAIS DE 3/4", FIXADO COM CHUMBADOR MECÂNICO. AF 04/2019 P	M	41,00	658,96	814,74	33.40 24 C	Ce Constant

ORÇAMENTO BÁSICO

BDI SERVIÇO UTILIZADO: 23,64% BDI INSUMO UTILIZADO: 14,45%

***************************************	A SECURE A CONTRACT CONTRACT OF THE CONTRACT O	an ar summaran dallah, ingganilisi sari						<u> </u>	JESUNEKAC.
ITEM	TABELA	CÓDIGO	PPA SERVIÇOS	UNID.	QUANT.	PREÇO UNIT.	PRECO UNIT. C/ BDI	PREÇO	PERCENTU
4.3.23	COMPOSIÇÃO	C4751	TPLATAFORMA EXECUTADA COM GRADE DE PISO DE ABERTURA 38×100mm APOIADA EM PERFIL "U" PULTRUDADO DE CHAPA PLANA ESP. 3MM, C/ ANTI-DERRAPANTE	M2	16,00	2.220,19	2.745,04	43.920,64	0,22%
4.3.24	COMPOSIÇÃO	C3502	MONTAGEM DE TUBOS, CONEXÕES E EQUIPAMENTOS DE TRATAMENTO, CASA DE OPERAÇÃO	UN	1,00	2.645,76	3.271,22	3.271,22	0,02%
4.4	-		LEITO DRENANTE - SERVIÇOS					110.932,51	0,55%
4.4.1	COMPOSIÇÃO	C2873	LOCAÇÃO DA OBRA COM AUXÍLIO TOPOGRÁFICO (ÁREA ATÉ 5000 M2)	M2	258,70	0,25	0,31	80,20	0,00%
4,4.2	SINAPI	96523	ESCAVAÇÃO MANUAL PARA BLOCO DE COROAMENTO OU SAPATA (INCLUINDO ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF 06/2017	МЗ	38,71	80,20	99,16	3.838,48	0,02%
4.4.3	SINAPI	96520	ESCAVAÇÃO MECANIZADA PARA BLOCO DE COROAMENTO OU SAPATA COM RETROESCAVADEIRA (SEM ESCAVAÇÃO PARA COLOCAÇÃO DE FÔRMAS). AF 06/2017	М3	348,40	84,28	104,20	36.303,28	0,18%
4.4.4	SINAPĪ	100981	CARGA, MANOBRA E DESCARGA DE ENTULHO EM CAMINHÃO BASCULANTE 6 M³ - CARGA COM ESCAVADEIRA HIDRÁULICA (CAÇAMBA DE 0,80 M³ / 111 HP) E DESCARGA LIVRE (UNIDADE: M3). AF 07/2020	M3	265,51	7,28	9,00	2.389,59	0,01%
4.4.5	SINAPI	93378	REATERRO MECANIZADO DE VALA COM RETROESCAVADEIRA (CAPACIDADE DA CAÇAMBA DA RETRO: 0,26 M³ / POTÊNCIA: 88 HP), LARGURA ATÉ 0,8 M, PROFUNDIDADE ATÉ 1,5 M, COM SOLO DE 1ª CATEGORIA EM LOCAIS COM BAIXO NÍVEL DE INTERFERÊNCIA. AF_04/2016	М3	9,21	20,27	25,06	230,80	0,00%
4.4.6	SINAPI	97913	TRANSPORTE COM CAMINHÃO BASCULANTE DE 6 M³, EM VIA URBANA EM REVESTIMENTO PRIMÁRIO (UNIDADE: M3XKM). AF_07/2020	мзхкм	295,02	2,55	3,15	929,31	0,00%
4.4.7	SINAPI	94969	CONCRETO FCK = 15MPA, TRAÇO 1:3,4:3,5 (EM MASSA SECA DE CIMENTO/ AREIA MÉDIA/ BRITA 1) - PREPARO MECÂNICO COM BETONEIRA 600 L. AF_05/2021	М3	5,43	334,77	413,91	2.247,53	0,01%
4,4.8	SINAPI	90000	ARMAÇÃO DE VERGA E CONTRAVERGA DE ALVENARIA ESTRUTURAL; DIÂMETRO DE 10,0 MM. AF 09/2021	KG	5,43	15,99	19,77	107,35 mel	ce Com
4.4.9	SINAPI	92423	MONTAGEM E DESMONTAGEM DE FÔRMA DE PILARES RETANGULARES E ESTRUTURAS SIMILARES, PÉ-DIREITO SIMPLES, EM CHAPA DE MADEIRA COMPENSADA RESINADA, 6 UTILIZAÇÕES. AF_09/2020	M2	28,51	59,31	73,33	2.00 0,64	0,01%